

50Hertz Transmission GmbH

Amprion GmbH

TenneT TSO GmbH

TransnetBW GmbH

GRUNDSÄTZE FÜR DIE AUSBAUPLANUNG DES DEUTSCHEN ÜBERTRAGUNGSNETZES

Änderungshistorie			
März 2012	Grundsätze für die Planung des deutschen Übertragungsnetzes	Erstveröffentlichung	
April 2015	Grundsätze für die Planung des deutschen Übertragungsnetzes	Weiterentwicklung	
Juli 2018	Grundsätze für die Ausbauplanung des deutschen Übertragungsnetzes	Überarbeitung	
Juli 2020	Grundsätze für die Ausbauplanung des deutschen Übertragungsnetzes	Ergänzung und Präzisierung	
Juli 2022	Grundsätze für die Ausbauplanung des deutschen Übertragungsnetzes	Ergänzung und Präzisierung	
Juli 2024	Grundsätze für die Ausbauplanung des deutschen Übertragungsnetzes	Ergänzung und Präzisierung	
	- Erweiterung Kapitel Systemstabilität,		
	- Ergänzung Kapitel Schaltanlagen		

50Hertz Transmission GmbH

Heidestraße 2 10557 Berlin

TenneT TSO GmbH

Bernecker Straße 70 95448 Bayreuth

Amprion GmbH

Robert-Schuman-Straße 7
44263 Dortmund

TransnetBW GmbH

Pariser Platz
Osloer Straße 15 – 17
70173 Stuttgart

Stand Oktober 2024 Seite 2 von 66

Inhaltsverzeichnis

1	Präambel	5
2	Grundsätze der Netzplanung	7
2.1	Inhalt	
2.2	Begriffsdefinitionen und Abgrenzungen	7
3	Randbedingungen der Netzplanung	11
3.1	Datengrundlage	
3.2	Betrachteter Netzumfang	
3.3	Planungszeitraum und Netzausbaustand	12
3.4	Netztopologie – Schaltzustand und Leistungsflusssteuerung	12
3.5	Praxisrelevante Fälle von Netzschwächungen	13
3.5.1	Einfachausfall eines Betriebsmittels	
3.5.2	Nichtverfügbarkeit bzw. Ausfall mehrerer Betriebsmittel	
3.5.3	Einordnung in den Netzplanungsprozess	
3.6	Vertikale Übertragungsaufgaben	
3.6.1	Übergabestellen zwischen ÜNB und Netznutzern	
3.6.2	Nahbereich von Netzanschlüssen der Netznutzer	
3.7	Horizontale Übertragungsaufgaben	
3.8	Blindleistungsbilanz und Spannungshaltung	
3.9	Bestimmung des Kurzschlussstromniveaus im AC-Netz	
4	Netztechnische Beurteilungskriterien	
4.1	Einleitung	
4.2	(n-1)- und erweitertes (n-1)-Kriterium	
4.2.1	Definition des (n-1)-Kriteriums	
4.2.2	Definition des erweiterten (n-1)-Kriteriums	
4.3	Netzanalysen für Mehrfachfehler	
4.4	Leistungsfluss – Thermische Belastungsgrenzen	
4.4.1	Drehstrom-Übertragungsnetz	
4.4.1.1	Belastbarkeit von Betriebsmitteln – Allgemein	
4.4.1.2	Belastbarkeit von Schaltanlagen	
4.4.1.3	Belastbarkeit von Transformatoren	
4.4.1.4	Belastbarkeit von Freileitungen – Beeinflussungsfragen	
4.4.1.5	Witterungsabhängige Belastbarkeit von Freileitungen	
4.4.1.6 4.4.1.7	Belastbarkeit von KabelnBelastbarkeit von Freileitungsstromkreisen mit Teilverkabelungsabschnitten	
4.4.1. <i>1</i> 4.4.2	HGÜ-Verbindungen / HGÜ-Konverterstationen	
4.4.2 4.5	Leistungsfluss – Blindleistungsbilanz und Spannungen	
4.5.1	Blindleistungsbilanz	
4.5.2	Spannungsgrenzen	
4.5.3	Blindleistungs- und Spannungsänderungen	
4.5.4	Spannungswinkeldifferenz	
4.6	Leistungsfluss – Schutz- und Stabilitätsengpassströme	
4.7	Verlust von Erzeugung oder Last	
4.8	Systemstabilität	
4.8.1	Allgemein	38
4.8.2	Polradwinkelstabilität	
4.8.3	Spannungsstabilität	
4.8.4	Frequenzstabilität	
4.8.5	Stromrichter-getriebene Stabilität und Resonanzstabilität	40
4.8.6	Stabilitätsaspekte in der Netzauslegung	40
4.8.6.1	Einleitung	
4.8.6.2	Transiente Stabilität von Erzeugungsanlagen	40

4.8.6.3	Statische Stabilität von Erzeugungsanlagen	41
4.8.6.4	Transiente Stabilität von Netzbereichen	41
4.9	Kurzschluss	42
4.10	Spannungsqualität	43
4.11	Sternpunkterdung	43
4.12	Schutzkonzepte	
4.13	Versorgungszuverlässigkeit	
5	Maßnahmen zur Einhaltung der Beurteilungskriterien	44
6	Begriffe	46
7	Abkürzungen, Formelzeichen und Einheiten	55
8	Abbildungs- und Tabellenverzeichnis	56
9	Literaturverzeichnis	57
10	Anhang / Anlagenverzeichnis	59

1 Präambel

Die vorliegenden Planungsgrundsätze definieren die Rahmenbedingungen für die Netzausbauplanung der deutschen Übertragungsnetzbetreiber (ÜNB). Sie beschreiben ein praktikables Vorgehen zur Erreichung der im EnWG beschriebenen konkurrierenden Ziele Versorgungssicherheit, Wirtschaftlichkeit und Umweltverträglichkeit bezüglich des perspektivisch geplanten Netzausbaustandes. Hierin werden implizit Prognoseunsicherheiten hinsichtlich der zu erwartenden Übertragungsaufgaben und Übertragungsfähigkeiten berücksichtigt.

Die Netzausbauplanung entwickelt nach diesen Grundsätzen bedarfsgerechte, d. h. weitgehend engpassfreie, Netzkonzepte im Hinblick auf die Netz- und Systemsicherheit für mittel- bis langfristige Planungszeiträume. Diese werden in der technisch-wirtschaftlichen und nachhaltigen Reihenfolge der Netzoptimierung, der Netzverstärkung und des Netzausbaus (das sog. NOVA-Prinzip) entwickelt.

Dabei gibt es interne und externe Faktoren, die einen Einfluss auf das in den vorliegenden Planungsgrundsätzen beschriebene Vorgehen sowie die genannten Bewertungskriterien zur Entwicklung eines bedarfsgerechten Netzkonzeptes haben.

Zu den internen Einflussfaktoren zählen vorrangig die

- Einhaltung der technischen Kriterien und
- technisch-wirtschaftliche Optimierung der Netzstruktur inkl.
- Höherbelastung des Bestandsnetzes.

Zu den externen Einflussfaktoren zählen unter anderen die

- Entwicklung des europäischen Elektrizitätsbinnenmarktes,
- Entwicklungen in den benachbarten Übertragungsnetzen,
- Entwicklungen in den nachgelagerten Verteilungsnetzen,
- Entwicklung sowie Marktintegration der Erzeugung aus regenerativen Energien,
- Entwicklung sowie Marktintegration weiterer dezentraler Erzeugung,
- Entwicklung konventioneller Kraftwerke und neuere Speichertechnologien (insbesondere geplante Stilllegungen und Nebauten) und
- Entwicklung der Nachfrage nach elektrischer Energie und deren Steuerungsmöglichkeiten bzw. Flexibilitäten.

Diese Einflussfaktoren werden durch das politische und regulatorische Umfeld beeinflusst und flankiert, unter anderen

- EU-Richtlinien und -Verordnungen zur Vollendung des europäischen Elektrizitätsbinnenmarktes, insbesondere die EU-Verordnung 2019/943,
- Energiewirtschaftsgesetz EnWG,
- Erneuerbare-Energien-Gesetz EEG,
- Kraft-Wärme-Kopplungsgesetz KWKG,
- Energieleitungsausbaugesetz EnLAG,
- Netzausbaubeschleunigungsgesetz Übertragungsnetz NABEG,
- Bundesbedarfsplangesetz BBPIG,
- Kraftwerks-Netzanschlussverordnung KraftNAV,
- Kohleverstromungsbeendigungsgesetz (KvbG) und
- Bundes-Klimaschutzgesetz (KSG).

Neben diesen vorliegenden Planungsgrundsätzen bilden insbesondere gemeinsame Datenmodelle zu energiewirtschaftlichen Szenarien, Netztopologien und Netznutzungsfällen die Grundlage für eine innerhalb Deutschlands und mit den europäischen Übertragungsnetzbetreibern koordinierte mittel- bis langfristige Netzentwicklung.

Stand Oktober 2024 Seite 5 von 66

Das Prinzip eines diskriminierungsfreien Netzzugangs wird für alle bestehenden bzw. potenziellen Netznutzer des Übertragungsnetzes verfolgt.

Situationen, die entsprechend der Grundsätze für die Ausbauplanung des deutschen Übertragungsnetzes nicht durch die Netzauslegung erfasst werden, müssen in der Systemauslegung für das Elektrizitätsversorgungssystem (Gesamtheit von Erzeugern, Netzen und Verbrauchern) im nationalen und europäischen Rahmen abgedeckt werden.

Verfahren und Kriterien zur Analyse des volkswirtschaftlichen Nutzens und der Kosten des Netzausbaus sind nicht Gegenstand der vorliegenden Planungsgrundsätze.

Die Einhaltung der Beurteilungskriterien gemäß diesen Planungsgrundsätzen ist eine Voraussetzung zur Gewährleistung der zukünftigen Netz- und Systemsicherheit und trägt damit gemäß EnWG dem Erfordernis eines sicheren und zuverlässigen Netzbetriebs in besonderer Weise Rechnung. Dazu bedarf es weiter der Entwicklung und des Einsatzes anforderungsgerechter und nach technisch-wirtschaftlichen Kriterien optimierter Schaltanlagen und Leitungen. Spezifikationen zu Bauformen von Schaltanlagen und Leitungen des Übertragungsnetzes (Anlagenlayout bzw. -design) sind grundsätzlich nicht Gegenstand der Planungsgrundsätze.

Die Planungsgrundsätze werden bei Erfordernis den sich ändernden gesetzlichen Rahmenbedingungen in Europa und Deutschland, dem aktuellen Stand der Technik und den sich ändernden Eigenschaften des Elektrizitätsversorgungssystems angepasst.

Das Übertragungsnetz in Deutschland steht durch den massiven Strukturwandel der Energieerzeugung (Ausstieg aus der Kohleverstromung) und die für die Erreichung der Klimaschutzziele notwendige, deutlich steigende Elektrifizierung auf der Verbrauchsseite, u. a. infolge forcierter Dekarbonisierung der Industrie, vor besonderen Herausforderungen, um auch künftig jederzeit die Netz- und Versorgungssicherheit zu gewährleisten. Infolge allgemeiner Laststeigerungen sowie der Aufnahme überschüssiger Leistung aus unterlagerten Verteilungsnetzen, müssen die bestehenden Netzverknüpfungspunkte zu den Verteilungsnetzen und Industriekunden verstärkt und ausgebaut sowie neue Netzverknüpfungspunkte errichtet werden.

Stand Oktober 2024 Seite 6 von 66

2 Grundsätze der Netzplanung

2.1 Inhalt

Die Planungsgrundsätze beschreiben die Rahmenbedingungen, den Untersuchungsgegenstand, das grundsätzliche Vorgehen sowie die netztechnischen Beurteilungskriterien und Maßnahmen der Netzausbauplanung (Einheit von Netzoptimierung, Netzverstärkung und Netzausbau) für eine bedarfs- und anforderungsgerechte Netzauslegung.

2.2 Begriffsdefinitionen und Abgrenzungen

Die **Netzausbauplanung**, nachfolgend **Netzplanung** genannt, führt Grundsatzplanungen zur Entwicklung bedarfsgerechter, d. h. weitgehend engpassfreier, Netzkonzepte im Hinblick auf die Netz- und Systemsicherheit für mittelfristige (bis 5 Jahre) bis langfristige Planungszeiträume (größer 5 Jahre) durch. Die Prognoseunsicherheiten (z. B. Erzeugungs- und Lastentwicklung) erfordern hierbei eine Betrachtung unterschiedlicher Szenarien der Energiemarktentwicklung (sog. Szenariorahmen).

Für die Netzanalysen der Netzausbauplanung ist eine Auswahl von planerisch relevanten Netznutzungsfällen erforderlich, damit das Übertragungsnetz einerseits zur Gewährleistung der Netzsicherheit grundsätzlich ausreichend bemessen wird und andererseits den Mindestanforderungen an einen effizienten Netzbetrieb Rechnung getragen werden kann. Die zu betrachtenden Last- und Erzeugungssituationen werden hierzu auf Basis von Strommarktsimulationen (nachfolgend Marktsimulation genannt; siehe <u>Anlage 1</u>) und der Analyse von relevanten horizontalen und vertikalen¹ Übertragungsaufgaben ausgewählt.

Für die daraus identifizierten planungs- und bemessungsrelevanten Netznutzungsfälle wird das idealerweise vollständig verfügbare Netz (sog. topologischer Grundfall) mit fehlerbedingten Abschaltungen (unplanmäßige, stochastische Ereignisse) oder betriebsbedingten Freischaltungen (planmäßige, determinierte Ereignisse) einzelner Betriebsmitteln beaufschlagt (vgl. Untersuchungsumfang für den Einfachausfall eines Betriebsmittels gemäß Kapitel 3.5.1).

Instandhaltungs-, reparatur- oder baubedingte Freischaltungen von Betriebsmitteln werden als Netzschwächungen in die Netzanalysen einbezogen, insbesondere wenn

- diese von langer Dauer sind und/oder
- es sich um Betriebsmittel handelt, die für weiträumige horizontale Übertragungsaufgaben von besonderer Bedeutung sind (vgl. Kapitel 3.5.2)² und/oder
- es sich um Betriebsmittel handelt, die für vertikale Übertragungsaufgaben von Bedeutung sind (vgl. Kapitel 3.5.2 unter Maßgabe des Kapitels 4.2.2).

Ein zeitgleicher Ausfall von zwei Betriebsmitteln wird nur bei einer gemeinsamen Ursache (Common-Mode-Ausfall) und einer besonderen Bedeutung für die horizontalen Übertragungsaufgaben, die sich zu überregionalen Großstörungen ausweiten könnten (vgl. Kapitel 4.3), bzw. für relevante vertikale Übertragungsaufgaben (vgl. Kapitel 4.3, Abbildung 3), betrachtet.

Der Ausfall von mehr als zwei Betriebsmitteln wird für die Netzauslegung nicht heran gezogen, muss aber im Rahmen der Systemauslegung betrachtet werden (vgl. Abbildung 1 und Kapitel 3.5.2).

Stand Oktober 2024 Seite 7 von 66

-

Vertikale Übertragungsaufgaben beziehen sich nachfolgend ausschließlich auf die Übergabestelle vom Übertragungsnetz zum Verteilungsnetz bzw. zum industriellen Netznutzer; sie betreffen nicht "horizontale" Verteilungsaufgaben in den nachgelagerten Netzen.

² Vorschlag gemäß "Monitoring-Bericht des Bundesministeriums für Wirtschaft und Technologie" in [1], S. 20: "...., das (n-1)-Kriterium für Netzplanung und -betrieb, das bisher in allen Fällen ein ausreichendes Sicherheitsniveau garantiert hat, [ist] um eine Risikobewertung in Bezug auf Mehrfachfehler zu erweitern, um auch in Zukunft überregionale Großstörungen sicher vermeiden zu können."

Die **Netzbetriebsplanung**, hier ausschließlich auf die vorbereitenden Tätigkeiten der Netz- und Systemführung für den nachfolgend beschriebenen Netzbetrieb bezogen, trägt dafür Sorge, dass kurz- bis mittelfristig anstehende Ereignisse wie Instandhaltungsarbeiten an Betriebsmitteln, Baumaßnahmen, etc. sicher durch den Netzbetrieb im täglichen Betriebsgeschehen beherrscht werden. Im Gegensatz zur Netzausbauplanung sind im Rahmen der Netzbetriebsplanung die Nichtverfügbarkeit von Betriebsmitteln und/oder Erzeugungsanlagen sowie die zu erwartende Last- und Erzeugungssituation in diesem Zeithorizont besser bekannt bzw. prognostizierbar. Infolge der gegenüber der Netzausbauplanung deutlich reduzierten Anzahl an Planungsvarianten müssen die Netzsicherheitsanalysen der Netzbetriebsplanung vorrangig störungsbedingte Ausfälle, unter Berücksichtigung von Ereignissen mit potenziell großer Störungsausbreitung³, beinhalten. Je nach Ergebnis der Netzsicherheitsanalyse muss dann auf die Übertragungsaufgabe Einfluss genommen werden können.

Der **Netzbetrieb**, hier ausschließlich auf die Tätigkeiten der Netz- und Systemführung bezogen, folgt in der täglichen Betriebsführung des Übertragungsnetzes den Vorgaben der vorgelagerten Netzbetriebsplanung und muss im Rahmen seiner kontinuierlichen Sicherheitsrechnungen dafür Sorge tragen, dass die konzeptgemäß zugelassenen Ereignisse wie Betriebsmittelausfälle mit den augenblicklich verfügbaren betrieblichen Möglichkeiten und Betriebsmitteln in ihren Auswirkungen begrenzt werden. Ausgangspunkt dieser Betrachtungen ist der jeweilige aktuelle Betriebszustand des Netzes und dessen prognostizierte Entwicklung im Tagesverlauf. Die Betriebsführung des Übertragungsnetzes hat nach Eintritt einer Störung so bald wie möglich wieder einen Netzzustand herzustellen, der die Beherrschung einer weiteren Störung ermöglicht, d. h. die Wiederherstellung eines (n-1)-sicheren Zustandes.

Die vorliegenden Planungsgrundsätze beschreiben ausschließlich die Rahmenbedingungen für die Netzplanung des deutschen Übertragungsnetzes.

Die ausschließlich auf die Tätigkeiten der Netz- und Systemführung bezogenen Prozesse der Netzbetriebsplanung und des Netzbetriebes sind nicht Gegenstand dieser Planungsgrundsätze; ebenso nicht die Systemauslegung für das Elektrizitätsversorgungssystem (Gesamtheit von Erzeugern, Netzen und Verbrauchern). Diese betrifft u. a. die in anderen Regelwerken definierten Anforderungen an Erzeuger und Verbraucher, aber auch Netz- und Markteingriffe zum Erhalt der Systemsicherheit.

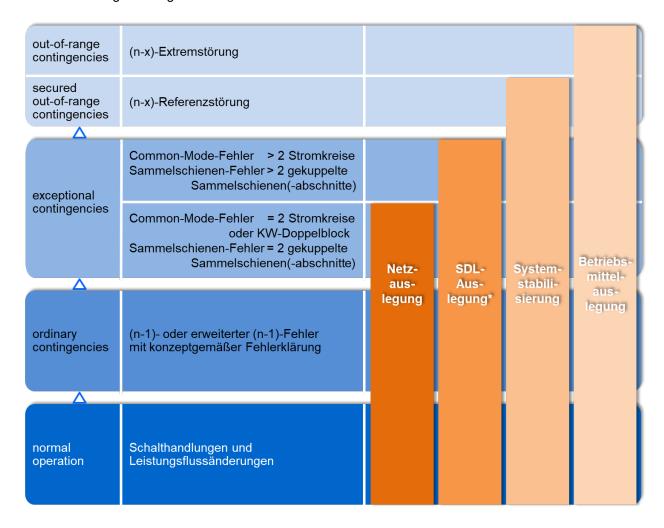
Die **Systemauslegung** der ÜNB⁴ beruht im Wesentlichen auf folgenden vier Säulen [3]:

- der **Netzauslegung**, welche die Netzadäquanz und die bedarfsgerechte Entwicklung der Netz-infrastruktur zur Erreichung der energiepolitischen Ziele sicherstellt,
- der **Auslegung von Systemdienstleistungen** (SDL), welche eine hohe Qualität der elektrischen Energieversorgung sicherstellen,
- der Auslegung der Maßnahmen zur Systemstabilisierung (inkl. System- und Netzschutz), welche eine Beherrschbarkeit von definierten Störungen und einen stabilen Betrieb im Nachfehlerzustand sicherstellt, und
- den systemischen Anforderungen an die technischen Fähigkeiten und Robustheit von Betriebsmitteln (Betriebsmittelauslegung), sodass sie gegenüber den Systemanforderungen im Normalbetrieb und bei definierten, schwerwiegenden Störungen robust sind, zur Systemstabilisierung beitragen können und darüber hinaus vor Überbeanspruchung geschützt werden.

Die Sicherstellung der Erzeugungsadäquanz liegt, anders als die o. g. Netzadäquanz, hingegen nicht im Verantwortungsbereich der ÜNB.

Stand Oktober 2024 Seite 8 von 66

-


³ Sog. "exceptional contingencies" bzw. "außergewöhnliche Ausfallvarianten" gemäß "Guideline on electricity transmission system operation" [2].

⁴ Für weitere Erläuterungen wird auf das Rahmendokument "Planung und Betrieb des deutschen Übertragungsnetzes" [3]

Die nachfolgende Abbildung 1 zeigt als Überblick die Abgrenzung der durch die Netz- und/oder Systemauslegung abzudeckenden Ausfallereignisse, insbesondere der für die vorliegenden Planungsgrundsätze relevanten **Netzauslegung** (vgl. dazu Kapitel 3.5).

In den vorliegenden Planungsgrundsätzen werden vorzugsweise die bei den Übertragungsnetzbetreibern etablierten englischen Begriffe für Ausfallvarianten gemäß "Guideline on electricity transmission system operation" (nachfolgend: "System Operation Guideline") [2] verwendet, die zum weiteren Verständnis den Begriffen der deutschen Ausgabe gegenübergestellt sind:

- ordinary contingencies = gewöhnliche Ausfallvarianten,
- exceptional contingencies = außergewöhnliche Ausfallvarianten und
- out-of-range contingencies = Ausnahme-Ausfallvarianten.

^{*} Die Abdeckung von Exceptional Contingencies über die Auslegung der Systemdienstleistungen kann situationsbedingt variieren. So werden beispielsweise bei zu erwartenden Extremwettersituationen (Sturm, starker Schneefall, etc.) weiterreichende Vorkehrungen getroffen, da dann die Eintrittswahrscheinlichkeit von Störungsereignissen größer ist.

Abbildung 1: Bestandteile und Abgrenzung abzudeckender Ausfallereignisse in der Netzauslegung⁵ und den anderen Säulen der Systemauslegung

Stand Oktober 2024 Seite 9 von 66

⁵ Anmerkung: Nicht konzeptgemäß geklärte "ordinary contingencies" führen in der Regel zu "exceptional contingencies". Diese sind in der Systemauslegung zu berücksichtigen.

Die Auslegung von Systemdienstleistungen ist nicht Bestandteil der Netzauslegung, da hierfür die Gesamtheit von Erzeuger, Netz und Verbraucher zu betrachten ist. Folgende Systemdienstleistungen können zudem durch ÜNB-eigene Betriebsmittel bereitgestellt werden:

- Frequenzhaltung durch z. B. rotierende Phasenschieber oder Betriebsmittel mit Energiespeichern,
- Spannungshaltung durch z. B. schaltbare und regelbare Blindleistungskompensationsanlagen oder HGÜ-Systemen.

Die Fähigkeit zum Schwarzstart bzw. zum Netzwiederaufbau ist eine Systemdienstleistung deren Beschaffung Aufgabe des Netz- und Systembetriebs ist. Die Netzkonzepte der Netzplanung sollen die Fähigkeit zum Netzwiederaufbau berücksichtigen. Hierfür sind begleitende Netzanalysen in Abstimmung mit der Systemführung erforderlich.

Die technische Bewertung von Netzanschlüssen am Höchstspannungsnetz ist nicht Bestandteil dieser Planungsgrundsätze. Hierfür sind die Technischen Regeln der TAR Höchstspannung [4] zu beachten.

Stand Oktober 2024 Seite 10 von 66

3 Randbedingungen der Netzplanung

3.1 Datengrundlage

Datengrundlage bilden gemeinsame Netzmodelle der deutschen Übertragungsnetzbetreiber sowie Modelle der Marktsimulation.

Die Netzmodelle berücksichtigen neben Entwicklungen im deutschen Übertragungsnetz auch Entwicklungen in den Übertragungsnetzen des kontinentaleuropäischen Synchrongebietes der ENTSO-E, anderen benachbarten Übertragungsnetzen und nachgelagerten Verteilungsnetzen. Neben einem Modell für den aktuellen Stand des Netzes (Ausgangs- bzw. Ist-Zustand) werden Planungsnetzmodelle für die Mittel- und Langfristplanung verwendet.

Die Planungsnetzmodelle sind dabei insbesondere Basis für die nationalen Netzentwicklungspläne Strom (NEP) der deutschen Übertragungsnetzbetreiber gemäß dem aktuell gültigen EnWG sowie für die europäischen 10-Jahres-Netzentwicklungspläne (TYNDP) der ENTSO-E gemäß den gültigen EU-Verordnungen.

In Modellen der Marktsimulation werden die Verbraucher, die konventionellen, regenerativen und dezentralen Erzeugungsanlagen im In- und Ausland sowie bestehende Übertragungskapazitäten berücksichtigt.

3.2 Betrachteter Netzumfang

Grundsätzlich wird in den Netzmodellen das gesamte deutsche Übertragungsnetz betrachtet. Dieses besteht heute aus der 380- und 220-kV-Drehstrom-Höchstspannungsebene inkl. der Transformatoren für horizontale und vertikale Übertragungsaufgaben, den direkt und indirekt am Übertragungsnetz angeschlossenen Blindleistungskompensationsanlagen, den Interkonnektoren zu benachbarten Übertragungsnetzbetreibern (landseitige Drehstrom- und Gleichstrom(HGÜ)-Verbindungen oder HGÜ-Seekabel-Verbindungen) sowie aus den Netzanbindungen von Offshore-Windparks⁶. Zusätzlich werden zukünftig in das Übertragungsnetz zu integrierende Fernübertragungsverbindungen einer höheren Spannungsebene bzw. alternativen Übertragungstechnologie (insbesondere HGÜ-Verbindungen) zur Übertragung hoher Leistungen über weite Entfernungen berücksichtigt. Dabei werden unter HGÜ-Verbindungen sowohl Punkt-zu-Punkt-Verbindungen zwischen zwei Verknüpfungspunkten mit dem AC-Übertragungsnetz als auch Multiterminal-Systeme⁷ mit mehr als zwei Verknüpfungspunkten mit dem AC-Übertragungsnetz verstanden.

Die vorliegenden Planungsgrundsätze gelten für DC-Anschlussleitungen von Offshore-Windparks (Verbindungen der seeseitigen Anschlusspunkte der Offshore-Windparks mit den landseitigen Netzverknüpfungspunkten zum AC-Übertragungsnetz) entsprechend deren technologischer Ausgestaltung gemäß Kapitel 4.4.2 und 4.7 Wenn es sich dabei um DC-Systeme handelt, die neben der Einspeisung der Offshore-Windparks auch dem Leistungsaustausch zwischen zwei und ggf. mehreren Verknüpfungspunkten des AC-Übertragungsnetzes dienen, sind Redundanzanforderungen für den Ausfall des DC-Systems nur für diesen Leistungsaustausch unter Beachtung der Bestimmungen der Kapitel 4.4.2 und 4.7 zu bemessen.

Erzeugungsanlagen mit Anschluss am Übertragungsnetz werden inkl. ihrer Netzanschlusstransformatoren hinsichtlich ihrer elektrischen Eigenschaften, die für das Systemverhalten relevant sind, adäquat modelliert und berücksichtigt. Die dem Übertragungsnetz nachgelagerten Verteilungsnetze inkl. dort angeschlossener Erzeugungsanlagen werden angemessen abgebildet.

Stand Oktober 2024 Seite 11 von 66

⁶ Netzanbindungen von Offshore-Windparks gelten gemäß EnWG ab dem Zeitpunkt der Errichtung als Teil des Energieversorgungsnetzes. In den Netzanschlussregeln der für die Netzanbindung zuständigen Übertragungsnetzbetreiber werden u. a. die technischen und organisatorischen Mindestanforderungen, die bei der Errichtung und beim Betrieb der Anschlüsse von Offshore-Windparks an die seeseitigen Anschlusspunkte mit dem Übertragungsnetz zu erfüllen sind, behandelt.

⁷ Multiterminal-Systeme in radialer oder vermaschter DC-Netzstruktur.

Die über Interkonnektoren verbundenen ausländischen Übertragungsnetze werden gemäß europäischem 10-Jahres-Netzentwicklungsplan (TYNDP) in die Betrachtung für die jeweilige Aufgabenstellung in geeigneter Form und erforderlichem Umfang einbezogen. Sofern vorhanden und erforderlich, werden darüberhinausgehende Maßnahmen aus den nationalen Netzentwicklungsplänen benachbarter Länder berücksichtigt.

3.3 Planungszeitraum und Netzausbaustand

Für den zu untersuchenden Planungszeitraum werden die entsprechenden energiewirtschaftlichen Rahmenbedingungen im In- und Ausland festgelegt. Dies betrifft Verbraucher, Erzeuger sowie Randbedingungen des europäischen Handels. Mit diesen Daten werden die notwendigen Marktsimulationen durchgeführt.

Das Planungsnetzmodell des Übertragungsnetzes enthält die für den jeweiligen Planungszeitraum der Mittelfristplanung (bis 5 Jahre) und Langfristplanung (größer 5 Jahre) relevante Netztopologie mit allen verfügbaren Betriebsmitteln und deren jeweiligen Belastbarkeiten. Dabei werden die bis zu diesem Planungszeitraum erwarteten Netzmaßnahmen (Optimierung, Verstärkung, Umstrukturierung, Erweiterung, Neubau) als realisiert unterstellt. Grundlage dafür ist insbesondere der Status von Netzmaßnahmen gemäß Monitoring zum EnLAG und BBPIG inkl. BMWi-Controlling zum Netzausbau.

Für die mittel- und langfristigen Netzkonzepte des deutschen Übertragungsnetzes werden innerhalb von ENTSO-E abgestimmte Netzausbaustände/Netztopologien der ausländischen Übertragungsnetze und in Abhängigkeit vom Anwendungsfall auch nachgelagerte Verteilungsnetze im erforderlichen Umfang und dem im jeweiligen Planungszeitraum bekannten und erwarteten Stand des Netzausbaus berücksichtigt.

3.4 Netztopologie – Schaltzustand und Leistungsflusssteuerung

Der im jeweiligen Planungszeitraum erwartete Stand des Netzausbaus gemäß Kapitel 3.3 ist mit allen verfügbaren Betriebsmitteln und deren jeweiligen Belastbarkeiten⁸ die Grundlage für die Untersuchungen.

Topologisch wird für den perspektivischen Netzbetrieb ein repräsentativer, planerisch robuster Schaltzustand des Übertragungsnetzes abgebildet (topologischer Grundfall). Gleichwohl können für Gruppen von Netznutzungsfällen mit vergleichbaren Übertragungsaufgaben andere charakteristische topologische Grundfälle definiert werden.

Für den topologischen Grundfall ist die Einhaltung der netztechnischen Beurteilungskriterien gemäß Kapitel 4 für alle Netznutzungsfälle des betrachteten Planungszeitraums zu prüfen. Änderungen der Netztopologie nach Eintritt von Grenzwertverletzungen im (n-1)-Ausfall und Common-Mode-Ausfall sind auszuschließen.

Für den topologischen Grundfall und die zu betrachtenden Ausfallvarianten sind Betriebsmittel mit flexiblen Eigenschaften (siehe Kapitel 3.5.1) hinsichtlich ihrer vorgesehenen Funktionsweisen (Spannungsbeeinflussung oder Leistungsflusssteuerung) zu berücksichtigen. Dies betrifft:

- i. Transformatoren
- Die Stufung der längs- oder schräggeregelten Transformatoren (HöS/HöS bzw. HöS/HS) erfolgt für den Grundfall auf den angestrebten Spannungs- bzw. Leistungswert.
- Diese Stufung wird bei der Simulation von Ausfallvarianten nicht verändert.

Stand Oktober 2024 Seite 12 von 66

⁸ Die Belastbarkeiten der Betriebsmittel beziehen sich auf die aktuellen Werte des Ausgangs- bzw. Ist-Zustandes nach Kapitel 3.3 bzw. auf den für den Planungszeitraum geplanten Realisierungsstand von Netzverstärkungsmaßnahmen (z. B. Austausch von engpassbestimmenden Betriebsmitteln innerhalb eines Stromkreises).

ii. Blindleistungskompensation

- Statische Blindleistungskompensationsanlagen (feste und stufbare Kompensationsspulen sowie Kondensatoren, z. B. MSCDN) werden im Grundfall bedarfsgerecht zur Spannungshaltung eingesetzt
- Generatoren von direkt am Höchstspannungsnetz angeschlossenen Erzeugungsanlagen, SVC, STATCOM, rotierende Phasenschieber und HGÜ-Konverterstationen werden zur automatischen Spannungshaltung im Grundfall eingesetzt, sofern sie dafür geeignet und vorgesehen sind.

iii. Querregeltransformatoren (PST) und FACTS

- PST und FACTS auf Interkonnektoren bzw. Kuppelleitungen zwischen Strommarktgebieten sowie innerhalb des deutschen Übertragungsnetzes sind im Grundfall entsprechend den ordnungsrechtlichen Vorgaben des europäischen Elektrizitätsbinnenmarktes einzusetzen.
- In den betrachteten Ausfallvarianten wird bei Überlastung der PST und FACTS deren Einstellung nur dann verändert, wenn diese mit einer lokalen Automatik zur Selbstentlastung ausgestattet sind.

iv. HGÜ-Verbindungen

- HGÜ-Verbindungen (Punkt-zu-Punkt-Verbindungen bzw. Multiterminal-Systeme) zwischen Strommarktgebieten und innerhalb des deutschen Übertragungsnetzes sind im Grundfall entsprechend den ordnungsrechtlichen Vorgaben des europäischen Elektrizitätsbinnenmarktes einzusetzen.
- In den betrachteten Ausfallvarianten wird deren Einstellung nur dann verändert, wenn die jeweilige HGÜ-Verbindung über eine geeignete Automatik verfügt.

3.5 Praxisrelevante Fälle von Netzschwächungen

3.5.1 Einfachausfall eines Betriebsmittels

Für netzsicherheitsrelevante Betrachtungen im Rahmen der Netzplanung wird für folgende Betriebsmittel die netzschwächende Auswirkung ihres Einfachausfalls, nachfolgend (n-1)-Ausfall genannt (ordinary contingency), auf die horizontale und vertikale Übertragungsaufgabe untersucht:

- Stromkreis,
- Fernübertragungsverbindung,
- HGÜ-Konverterstation,
- Transformator,
- Blindleistungskompensationsanlage,
- Betriebsmittel zur Leistungsflusssteuerung,
- Sammelschiene bzw. Sammelschienenabschnitt⁹,
- Erzeugungsanlage (inkl. Speicheranlage).

Die Verwendung der Begriffe AC und Drehstrom bzw. DC und Gleichstrom sind in diesem Kontext synonym zu verwenden. Nachfolgend werden ausgewählte Betriebsmittel des Übertragungsnetzes näher spezifiziert:

Unter **Stromkreis** ist der schutz- und schaltungstechnisch abgrenzbare Teil einer Drehstrom- bzw. Gleichstrom-Verbindung zwischen Stationen des Übertragungsnetzes zu verstehen. Er kann aus Freileitungen, Kabeln oder Teilverkabelungen¹⁰ bestehen.

Stand Oktober 2024 Seite 13 von 66

⁹ Einzelfallbetrachtung der Fehlerauswirkungen gemäß Kapitel 4.3

¹⁰ Bei AC-Kabeln bzw. -Teilverkabelungen ggf. inkl. zugehöriger Blindleistungskompensationsanlagen.

Als **Fernübertragungsverbindungen** sind weiträumige Übertragungsverbindungen hoher Leistungen mit Technologien außerhalb des 380- und 220-kV-Drehstrom-Übertragungsnetzes (z. B. HGÜ-Verbindungen) zu verstehen, die in Freileitungs- und/oder Kabelbauweise ausgeführt werden und deren Anfangs- und Endpunkte bzw. deren HGÜ-Konverterstationen im deutschen oder in benachbarten Übertragungsnetz(en) liegen. Bei HGÜ-Verbindungen besteht eine Punkt-zu-Punkt-Verbindung aus zwei HGÜ-Konverterstationen und ein Multiterminal-System aus mehr als zwei HGÜ-Konverterstationen sowie aus den, die HGÜ-Konverterstationen verbindenden, Stromkreisen.

Unter **HGÜ-Konverterstation** im Übertragungsnetz wird in den vorliegenden Planungsgrundsätzen eine Anlage zur Wandlung elektrischer Energie zwischen AC (Drehstrom) und DC (Gleichstrom) in der Regel auf Basis spannungsgeführter Stromrichter (Voltage Source Converter – VSC) verstanden, die in der Lage ist, Wirk- und Blindleistung unabhängig voneinander auszusteuern.

Als **Transformatoren** im Übertragungsnetz werden für horizontale Übertragungsaufgaben die Transformatoren zwischen den Spannungsebenen 380 kV und 220 kV (HöS/HöS) sowie Transformatoren zur Leistungsflusssteuerung innerhalb dieser Spannungsebenen (Querregeltransformatoren bzw. PST) betrachtet. Für vertikale Übertragungsaufgaben werden die Transformatoren (HöS/HS) im Übertragungsnetz berücksichtigt, die zu den regionalen Verteilungsnetzen und Hoch- bzw. Mittelspannungs-Netzanschlüssen von industriellen Netznutzern umspannen. Netzanschlusstransformatoren (HöS/HS) von konventionellen und regenerativen Erzeugungsanlagen werden im Zusammenhang mit deren Anschlussleitungen betrachtet.

Unter **Blindleistungskompensationsanlagen** werden Betriebsmittel zur Kompensation des induktiven oder kapazitiven Blindleistungsbedarfs des Übertragungsnetzes verstanden. Diese sind im Regelfall direkt am Übertragungsnetz (Sammelschienen einer Schaltanlage), an Kabel-Stromkreisen bzw. Kabel-Stromkreisabschnitten, an den Tertiärwicklungen der Transformatoren im Übertragungsnetz oder in unterspannungsseitigen Schaltfeldern der Übergabestellen zwischen Übertragungsnetz und Verteilungsnetzen angeschlossen. Sie wirken entweder statisch (Blindleistungskompensation mit Kompensationsspulen mit fixer oder stufbarer Leistungsgröße bzw. Kondensatoren (z. B. MSCDN)) oder dynamisch (stufenlos regelbare Blindleistungskompensation, z. B. SVC, STATCOM, rotierende Phasenschieber). Blindleistungskompensationsanlagen können anderen Betriebsmitteln fest zugeordnet sein, z. B. wenn Kabel/Kabelabschnitte und Kompensationsspulen eine schutz- und schaltungstechnisch abgegrenzte Einheit bilden.

Unter **Betriebsmittel zur Leistungsflusssteuerung** werden Betriebsmittel verstanden, die im Übertragungsnetz den Wirkleistungsfluss verändern sollen. Darunter zählen insbesondere Querregeltransformatoren und andere Betriebsmittel mit vergleichbarer Funktionalität (z. B. Anlagen zur Längskompensation von Stromkreisen als TCSC).

Unter **Sammelschiene** bzw. **Sammelschienenabschnitt** sind jeweils schutz- und schaltungstechnisch abgrenzbare Teile einer Sammelschienenanlage zu verstehen. Aufgrund der Vielfalt an Anlagenbauformen können für den Ausfall einer Sammelschiene bzw. eines Sammelschienenabschnittes pauschale Aussagen zu tolerierbaren Fehlerauswirkungen nur schwer getroffen werden, da davon im Regelfall eine Vielzahl angeschlossener Betriebsmittel betroffen ist. Daher ist der Sammelschienenfehler bei den Analysen der Netzplanung wie ein Einfachausfall zu behandeln und bezüglich seiner Fehlerauswirkungen einer Einzelfallbetrachtung zu unterziehen.

3.5.2 Nichtverfügbarkeit bzw. Ausfall mehrerer Betriebsmittel

Für netzsicherheitsrelevante Betrachtungen im Rahmen der Netzplanung werden nach dem Einfachausfall gemäß Kapitel 3.5.1 im zweiten Schritt, unter den nachfolgend beschriebenen Voraussetzungen, die gleichzeitige Nichtverfügbarkeit mehrerer Betriebsmittel unter Berücksichtigung betriebsbedingter Freischaltungen (erweiterter (n-1)-Ausfall) bzw. des zeitgleichen Ausfalls mehrerer Betriebsmittel (Common-Mode-Ausfall) herangezogen.

Stand Oktober 2024 Seite 14 von 66

Die gleichzeitige **Nichtverfügbarkeit mehrerer Betriebsmittel** betrifft vorrangig instandhaltungs-, reparatur- oder baubedingte Freischaltungen (nachfolgend: betriebsbedingte Freischaltungen) kombiniert mit einem (n-1)-Ausfall, der sog. "erweiterte (n-1)-Ausfall". Dieser bezieht sich auf diejenigen Betriebsmittelkombinationen, die

- mindestens ein Betriebsmittel mit einer erwartungsgemäß langen Nichtverfügbarkeit (geplant oder ungeplant) bei einem (n-1)-Ausfall eines anderen Betriebsmittels oder
- mindestens ein Betriebsmittel mit einer erwartungsgemäß langen Nichtverfügbarkeit (geplant oder ungeplant) und einer betriebsbedingten (geplanten) Freischaltung eines anderen Betriebsmittels beinhalten,

und/oder die von besonderer Bedeutung für horizontale Übertragungsaufgaben bzw. von Bedeutung für vertikale Übertragungsaufgaben sind (unter Maßgabe des Kapitels 4.2.2).

Wichtige praxisrelevante Beispiele des erweiterten (n-1)-Ausfalls sind in der nachfolgenden Tabelle 1 und in der Abbildung 2 gemäß Kapitel 4.2.2 aufgeführt.

Der zeitgleiche **Ausfall mehrerer Betriebsmittel**, insbesondere durch Common-Mode-Ausfälle (Exceptional Contingencies gemäß **Abbildung 1**), kann Betriebsmittelkombinationen betreffen, die von besonderer Bedeutung für die horizontalen Übertragungsaufgaben und die Vermeidung überregionaler Großstörungen sind. Wichtige praxisrelevante Beispiele hierfür sind in der nachfolgenden Tabelle 2 sowie als Beispiel für die Netzsicherheit der vertikalen Übertragungsaufgabe in der Abbildung 3 gemäß Kapitel 4.3 aufgeführt. Common-Mode-Ausfälle können als Mehrfachfehler einen starken Einfluss auf die Netzsicherheit für die horizontalen und vertikalen Übertragungsaufgaben haben. Ihre Eintrittswahrscheinlichkeit ist höher als die unabhängiger Mehrfachausfälle¹¹. Zudem werden letztere gemäß "System Operation Guideline" [2] den "out-of-range contingencies" zugeordnet und sind damit für die Netzauslegung (siehe Abbildung 1) nicht relevant. Daher werden in den vorliegenden Planungsgrundsätzen ausschließlich Common-Mode-Ausfälle als Mehrfachfehler betrachtet.

Möglichkeiten für **betriebsbedingte Freischaltungen**¹² von Stromkreisen (Freileitung, Kabel, Teilverkabelung), Fernübertragungsverbindungen und Blindleistungskompensationsanlagen sind planerisch bei der Bemessung des Übertragungsnetzes insbesondere dann zu berücksichtigen, wenn die Netzsicherheit der weiträumigen horizontalen Übertragungsaufgabe durch Verletzung des (n-1)-Kriteriums (siehe Kapitel 4.2) gefährdet wäre. Gleiches gilt, wenn für länger andauernde betriebsbedingte Freischaltungen die Netzsicherheit der vertikalen Übertragungsaufgabe durch Verletzung des (n-1)-Kriteriums durch betriebliche Maßnahmen im Übertragungsnetz und/oder im betroffenen, nachgelagerten Verteilungsnetz nicht mehr erreicht werden könnte.

Der Nichtverfügbarkeit der Stromkreise einer Mastgestängehälfte bei Mehrfachleitungen (z. B. 4-fachoder 6-fach-Gestänge bzw. -Leitungen) wird zunehmende Bedeutung beigemessen, da u. a. aufgrund des Minimierungsgebotes bei der Rauminanspruchnahme neue Leitungen gebündelt in vorhandenen Leitungstrassen zu errichten sind und somit zunehmend Mehrfachleitungen entstehen. Im Rahmen von Netzanalysen werden in der Regel im Sinne von Mehrfachabschaltungen nur diejenigen Stromkreise betrachtet, die jeweils den gleichen horizontalen oder vertikalen Übertragungsaufgaben dienen.

Da mit der Bündelung von Stromkreisen auf Mehrfachgestängen bzw. von Leitungen in Trassenkorridoren zugleich das Risiko für Common-Mode-Ausfälle (z. B. der Mastumbruch einer Mehrfachleitung infolge Extremwettersituation gemäß Tabelle 2) steigt, sind Netzanalysen zur Bewertung der Störungsauswirkungen durchzuführen.

Stand Oktober 2024 Seite 15 von 66

-

¹¹ Unabhängige Mehrfachausfälle haben mehrere voneinander unabhängige Ursachen (zumindest zwei), die zufällig zeitgleich auftreten bzw. sich zeitlich überlappen; jedoch ist der zweite Ausfall nicht die determinierte Folge des ersten Ausfalls.

¹² Belastbare Planungen für betriebsbedingte Freischaltungen liegen in der Regel nur für kurz- bis mittelfristige Zeithorizonte vor.

Grundsätzlich sollten Mehrfachleitungen (z. B. 4-fach- oder 6-fach-Gestänge bzw. -Leitungen), insbesondere für Stromkreise, die bspw. den gleichen horizontalen (HöS/HöS) bzw. den jeweils gleichen horizontalen und vertikalen Übertragungsaufgaben (HöS/HS) dienen, vermieden werden bzw. nur in begrenztem Umfang Anwendung finden.

Zu einer gleichzeitigen Abschaltung **mehrere Erzeugungsanlagen** kann es aus technischen, brennstoffspezifischen, kühlungstechnischen oder wirtschaftlichen Gründen kommen. In diesem Sinne werden hier auch Offshore-Windparks eingeordnet, deren Netzanschlüsse gebündelt über ein sog. Anbindungssystem erfolgt. Ist die Netzanbindung von Offshore-Windparks Bestandteil eines Multiterminal-Systems, wird der Umfang der Abschaltung vom Topologie- und Redundanzkonzept der HGÜ-Verbindung bestimmt.

Instandhaltungs- oder Bauarbeiten an Anlagenteilen, die z. B. aus Sicherheitsgründen die gleichzeitige betriebsbedingte Freischaltung einer Vielzahl intakter Betriebsmittel erfordern, können spezielle Probleme aus Sicht der Netzsicherheit darstellen, die bereits bei der Netzplanung zu betrachten sind. Neben Doppelund Mehrfachleitungen sowie im gleichen Graben parallel geführten Kabeln, sind dies u. a. Leitungskreuzungen, insbesondere von Vielfachleitungen, oder Überspannungen im Sammelschienenbereich von Schaltanlagen. In solchen Fällen kann bei betriebsbedingten Freischaltungen das (n-1)-Kriterium auch unter Berücksichtigung begünstigender Effekte, wie die Durchführung geplanter Arbeiten bei niedriger Last, oft nicht mehr eingehalten werden. Netzsicherheitsanalysen werden hier zur Abschätzung von Störungsauswirkungen durchgeführt, um bereits frühzeitig im Rahmen der Netzplanung gestalterisch, z. B. auf die Stromkreisführung oder das Layout von Schaltanlagen, einzuwirken bzw. die Notwendigkeit baubedingter Provisorien zu identifizieren.

Tabelle 1: Praxisrelevante Mehrfachabschaltungen im Sinne des erweiterten (n-1)-Ausfalls (Ausfall während betriebsbedingter Freischaltung bzw. betriebsbedingte Freischaltungen mehrerer Betriebsmittel) mit Auswirkungen auf die horizontale und/oder vertikale Übertragungsaufgabe

Betriebsmittelkombination	Grund der Betrachtung	horizontale	vertikale
		Übertragungsaufgabe	
Stromkreis bzw. Fernübertragungsverbindung + Erzeugungsanlage	lange Reparaturdauer und hohe Ausfallhäufigkeit einer Erzeugungsanlage bzw. Fernübertragungsverbindung	X	
Stromkreis + Stromkreis	längere betriebsbedingte Freischaltungen und/oder besondere Bedeutung für die weiträumige horizontale Übertragungsaufgabe	X	X
Fernübertragungsverbindung + Stromkreis	lange Reparaturdauer, längere betriebsbedingte Freischaltungen und/oder besondere Bedeutung für die weiträumige horizontale Übertragungsaufgabe	X	
Fernübertragungsverbindung + Fernübertragungsverbindung	lange Reparaturdauer, längere betriebsbedingte Freischaltungen und/oder besondere Bedeutung für die weiträumige horizontale Übertragungsaufgabe	X	

Stand Oktober 2024 Seite 16 von 66

Betriebsmittelkombination	Grund der Betrachtung	horizontale	vertikale
		Übertragungsaufgabe	
(Teil-)Kabelstromkreis + Stromkreis	lange Reparaturdauer Kabel	Х	Х
Stromkreis bzw. Fernübertragungsverbindung + Blindleistungskompensations- anlage	lange Reparaturdauer, längere betriebsbedingte Freischaltungen und/oder besondere Bedeutung für die weiträumige horizontale Übertragungsaufgabe	Х	
Transformator + Transformator	lange Reparaturdauer Transformator	X ¹³	X ¹⁴
Transformator + Stromkreis bzw. Fernübertragungs- verbindung	lange Reparaturdauer Transformator bzw. Kabel	Х	Х
Transformator + Erzeugungsanlage	lange Reparaturdauer beider Betriebsmittel, hohe Ausfallhäufigkeit einer Erzeugungsanlage	Х	
mehrere Erzeugungsanlagen	lange Reparaturdauer und hohe Ausfallhäufigkeit einer Erzeugungs- anlage	Х	
mehrere Schaltfelder oder Sammelschienen(-abschnitte)	betriebsbedingte Freischaltung von Betriebsmitteln für Schutzabstand bei geplanten Arbeiten	Х	Х
Stromkreise einer Mast- gestängehälfte	geplante Arbeiten bzw. Störungs- beseitigung	Х	Х
Blindleistungskompensations- anlage + Blindleistungskompen- sationsanlage	lange Reparaturdauer	X	Х

Stand Oktober 2024 Seite 17 von 66

¹³ Ausschließlich für 380/220-kV-Transformatoren.

¹⁴ Im Grundsatz für Kombinationen von 380/110-kV- und/oder 220/110-kV-Transformatoren zu den regionalen 110-kV-Verteilungsnetzen sowie bei Erfordernis von HöS-Transformatoren zu industriellen Netznutzern. In Einzelfällen auch Kombinationen eines 380/220-kV-Transformators mit einem 380/110-kV- oder 220/110-kV-Transformator bzw. einem HöS-Transformator zum industriellen Netznutzer.

Tabelle 2: Praxisrelevante Beispiele zeitgleicher Ausfälle mehrerer Betriebsmittel (Common-Mode-Ausfälle)¹⁵ mit Auswirkungen auf die horizontale und/oder vertikale Übertragungsaufgabe sowie Relevanz für die Netzauslegung

Betriebsmittel-	Grund der Betrachtung	horizontale	vertikale	Relevanz für	
konstellation	Beispiel(e)	Übertragungsaufgabe		Netz- auslegung	
Mehrfachleitung (Freileitung oder Fern- übertragungsverbindung)	Mastumbruch infolge Extremwettersituation	Х	Х	Xª	
Mehrfach-Kabelanlage	Fremdeinwirkung auf im gleichen Graben geführte Kabelstromkreise	Х	Х	Xª	
mehrere Erzeugungs- anlagen	Ausfall des Eigenbedarfs einer Doppelblockanlage	Х	Х	Хр	
Parallel im selben Trassenkorridor geführte bzw. kreuzende Freilei- tungen oder Fernübertra- gungsverbindungen (Mehrfachleitungen)	Mastumbruch mit Folgebeschädigung weiterer Freileitungen oder Fernübertragungs- verbindungen	X	X		
Ausfall gekuppelter Sammelschienen bzw. Sammelschienenab- schnitte	Seilriss der Überspan- nung, Schutz- oder Leis- tungsschalterversagen, Unwetter, Fremdeinwir- kung	X	X	Xc	

X^a - Beschränkung auf zwei Stromkreise

Der Ausfall einer Leitung mit mehr als zwei Stromkreisen bzw. der Ausfall von mehr als zwei gekuppelten Sammelschienen oder Sammelschienenabschnitten wird nicht durch die Netzauslegung abgedeckt. Dieser Ausfallumfang muss durch die Systemauslegung beherrschbar sein (vgl. Kapitel 2.2 und Abbildung 1) und bedarf weiterer Untersuchungen.

Gemäß "System Operation Guideline" [2] sind die sog. "Exceptional Contingencies" (außergewöhnliche Ausfallvarianten) durch das gleichzeitige Auftreten mehrerer Ausfälle <u>mit gemeinsamer Ursache</u> (Common-Mode-Ausfall) gekennzeichnet. Diese Fehler sind, insbesondere bei deutlich höherer Eintrittswahrscheinlichkeit aufgrund der Betriebs- und Witterungsbedingungen und/oder bei starken Auswirkungen auf das eigene oder benachbarte Übertragungsnetz(e), grundsätzlich zu betrachten.

Stand Oktober 2024 Seite 18 von 66

X^b - Beschränkung auf KW-Doppelblock

X° - Beschränkung auf zwei gekuppelte Sammelschienen oder Sammelschienenabschnitte

¹⁵ In Anlehnung an die "FNN - Störungs- und Verfügbarkeitsstatistik" [6], S. 102-103

Die sog. "Out-of-range Contingencies" (Ausnahme-Ausfallvarianten) sind nach [2] durch das gleichzeitige Auftreten mehrerer Ausfälle <u>ohne</u> gemeinsame Ursache gekennzeichnet (sog. "zeitgleicher unabhängiger Mehrfachfehler"). Diese Fehler weisen im Grundsatz eine sehr kleine Eintrittswahrscheinlichkeit auf, können aber zu sehr hohen Fehlerauswirkungen führen. In solchen Fällen befindet sich das System im Regelfall im betrieblichen Notzustand ("Emergency State"), in dem ein oder mehrere betriebliche(r) Grenzwert(e) überschritten wird/werden.

In der Netzplanung werden hinsichtlich Netzauslegung Exceptional Contingencies nur im Umfang gemäß Tabelle 2 und betriebliche Notzustände (Out-of-range Contingencies) im Regelfall nicht berücksichtigt, um ein "Überbauen" des Übertragungsnetzes aus technisch-wirtschaftlicher Sicht auszuschließen. Gleichwohl muss die Netzplanung über den Umfang nach Tabelle 2 hinausgehende Exceptional Contingencies analysieren, um, z. B. über ein geeignetes Layout von Schaltanlagen/Umspannwerken und Leitungen (Freileitungen und Kabel), die Eintrittswahrscheinlichkeit und den Ausfallumfang an Betriebsmitteln auf einen netzund systemtechnisch vertretbaren Umfang zu begrenzen.

In den nachfolgenden Punkten werden die in der Netzplanung betrachteten bzw. zu berücksichtigenden Common-Mode-Ausfälle explizit benannt. Grundsätzlich wird dabei beim Common-Mode-Ausfall ein Ausfallumfang gemäß Tabelle 2, Spalte "Relevanz für Netzauslegung", betrachtet. Ein darüber hinausgehender Ausfallumfang wird analog zu den "Out-of-range Contingencies" bzgl. Netzauslegung nicht berücksichtigt, diese sind Gegenstand der Systemauslegung (vgl. Kapitel 2.2 und Abbildung 1).

3.5.3 Einordnung in den Netzplanungsprozess

In der Netzplanung ist die Betrachtung des (n-1)-Ausfalls für die Ermittlung eines bedarfsgerechten, d. h. eines weitgehend engpassfreien, Netzes die Grundlage für die Ableitung notwendiger Maßnahmen zur Netzoptimierung, Netzverstärkung und zum Netzausbau. Diese erfolgt anhand einer Bewertung hinsichtlich derjenigen Netznutzungsfälle, die Grenzwertverletzungen aufweisen.

Um die erforderlichen Freiheitsgrade für den Betrieb des Übertragungsnetzes bzw. für die auf die Tätigkeiten der Netz- und Systemführung bezogenen Prozesse der Netzbetriebsplanung und des Netzbetriebes zu schaffen, ist in der Netzplanung zudem die Betrachtung des erweiterten (n-1)-Ausfalls notwendig. Durch die einerseits zunehmend ansteigende Netzbelastung und die andererseits im laufenden Netzbetrieb notwendigen betriebsbedingten Freischaltungen sowohl für Instandhaltungs- und Reparaturarbeiten als auch für den Netzum- und Netzausbau werden ansonsten diese betrieblichen Freiheitsgrade im realen Netzbetrieb immer weiter eingeschränkt. Für den erweiterten (n-1)-Ausfall muss das Erfordernis notwendiger Maßnahmen zur Netzoptimierung, Netzverstärkung und zum Netzausbau anhand einer Bewertung hinsichtlich Eintrittswahrscheinlichkeit, Häufigkeit und Dauer des Ausfalls geprüft werden.

Die Analysen der Netzplanung zum Common-Mode-Ausfall gemäß Tabelle 2 sind ein wichtiger Indikator für die Netzsicherheit bei horizontalen Übertragungsaufgaben zur Vermeidung überregionaler Großstörungen und für die Netzsicherheit bei vertikalen Übertragungsaufgaben. Führt der Common-Mode-Ausfall zu nicht tolerierbaren Befunden (eine oder mehrere Grenzwertverletzungen), muss das Erfordernis zur Ableitung notwendiger Maßnahmen zur Netzoptimierung, Netzverstärkung und zum Netzausbau anhand einer Bewertung hinsichtlich Eintrittswahrscheinlichkeit, Häufigkeit und Dauer des Ausfalls sowie ihrer Auswirkungen geprüft werden.

Die Beherrschung darüberhinausgehender außergewöhnlicher Ausfallvarianten (Exceptional Contingencies) und betrieblicher Notzustände (Out-of-range Contingencies) ist – wie bereits oben beschrieben – nicht Gegenstand der Netzauslegung. Die Beherrschung dieser Ereignisse kann letztlich nur im Rahmen der Systemauslegung, u. a. durch den Einsatz von netz- und marktbezogenen Maßnahmen bis hin zu massiven Markteingriffen durch die Systemführung in der Netzbetriebsplanung und im Netzbetrieb, erfolgen.

Stand Oktober 2024 Seite 19 von 66

3.6 Vertikale Übertragungsaufgaben

3.6.1 Übergabestellen zwischen ÜNB und Netznutzern

Für die vertikalen Übertragungsaufgaben an der bzw. den Übergabestelle(n) zwischen ÜNB und Netznutzern sind sowohl die Verträge mit den Netznutzern (Verteilungsnetzbetreiber, Endverbraucher, Betreiber von Erzeugungsanlagen) mit darin vereinbarten Leistungswerten und -profilen (Wirk- und Blindleistung sowie Spannung) sowie dem diesbzgl. vereinbarten Verhalten der Netznutzer, als auch Prognosen für den Betrachtungszeitraum bei der Bemessung der Übergabestellen, inkl. der Redundanzanforderungen an diese, geeignet zu berücksichtigen. Weiterhin sind die Regeln für den Betrieb und die Planung von elektrischen Netzen an der Schnittstelle Übertragungs- und Verteilnetze [5] zu beachten.

Maßnahmen zur Spitzenkappung von Windenergie an Land oder von solarer Strahlungsenergie (sog. EE-Spitzenkappung¹⁶) können bei der Prognose des Leistungsaustauschs zwischen ÜNB und Netznutzer netzplanerisch berücksichtigt werden. Dies kann pauschal oder nach den individuellen Angaben der Übertragungs- und Verteilungsnetzbetreiber¹⁷ erfolgen. Planerisch kann die Spitzenkappung großräumig oder individuell für Übergabestellen modelliert werden. Dabei kann die Spitzenkappung für beide Energieträger einzeln oder kombiniert bzw. gemeinsam unter Berücksichtigung des prognostizierten Leistungsbedarfs modelliert werden.

In Ergänzung zur v. g. EE-Spitzenkappung gemäß EnWG werden planerisch zudem die Vorgaben gemäß Artikel 13 Absatz 5 der Verordnung (EU) 2019/943 [38] berücksichtigt, sofern die dort genannten Bedingungen erfüllt sind. Demzufolge wäre eine Kappung von bis zu 5 Prozent der jährlich erzeugten Elektrizität von Anlagen, in denen erneuerbare Energiequellen genutzt werden, zulässig. Planerisch kann die Kappung großräumig oder individuell für Übergabestellen modelliert werden. Sofern die dort genannten Bedingungen nicht erfüllt sind, bliebe davon die o. g. EE-Spitzenkappung um bis zu 3 Prozent gemäß § 11 Absatz 2 EnWG (2023) unberührt.

Grundsätzlich sind für die Analysen zur Bemessung des Übertragungsnetzes für vertikale Übertragungsaufgaben die gemäß Anlage 2 generierten Netznutzungsfälle zu verwenden.

Zur Bemessung der erforderlichen Kapazität der Übergabestellen zwischen dem Übertragungsnetz und dem Netznutzer werden die vertraglich vereinbarten und/oder prognostizierten Anforderungen an den maximalen Leistungsaustausch (Netzanschlusskapazitäten für Bezug und Einspeisung) sowie die ggf. vertraglich vereinbarten Redundanzanforderungen an die betreffenden Betriebsmittel – HöS/HS- bzw. HöS/MS-Transformatoren und/oder HöS-Anschlussleitungen, die ausschließlich der Erfüllung der vertikalen Übertragungsaufgabe für Netznutzer dienen – zugrunde gelegt.

Bei Netznutzern mit mehreren Übergabestellen zum Übertragungsnetz kann dabei eine (n-1)-sichere Auslegung der Betriebsmittel auch durch gegenseitige Redundanz der einzelnen Übergabestellen erbracht werden, sodass nicht jede Übergabestelle für sich (n-1)-sicher ausgelegt werden muss.

Stand Oktober 2024 Seite 20 von 66

¹⁶ Auszug aus § 11 Absatz 2 EnWG (2023): Für einen bedarfsgerechten, wirtschaftlich zumutbaren Ausbau der Elektrizitätsversorgungsnetze nach Absatz 1 Satz 1 können Betreiber von Elektrizitätsversorgungsnetzen den Berechnungen für ihre Netzplanung die Annahme zugrunde legen, dass die prognostizierte jährliche Stromerzeugung je unmittelbar an ihr Netz angeschlossener Anlage zur Erzeugung von elektrischer Energie aus Windenergie an Land oder solarer Strahlungsenergie um bis zu 3 Prozent reduziert werden darf (Spitzenkappung). ...

Dagegen muss der ÜNB im Szenariorahmen des Netzentwicklungsplan Strom gemäß § 12a Absatz 1 EnWG (2023) die sog. Spitzenkappung berücksichtigen.

¹⁷ Gemäß FNN-Hinweis, Spitzenkappung – ein neuer planerischer Freiheitsgrad, Möglichkeiten zur Berücksichtigung der Spitzenkappung bei der Netzplanung in Verteilnetzen [8]

Außerdem sind auch Möglichkeiten zur Reservestellung im Verantwortungsbereich des Netznutzers bei der Bemessung der Betriebsmittel in Betracht zu ziehen, z. B. Redundanzen zwischen Netzgruppen (Teilnetzen) des Verteilungsnetzbetreibers bzw. benachbarter Verteilungsnetzbetreiber. In Übergabestellen zu mehreren Netznutzern kommt zudem die gegenseitige temporäre Mitnutzung der Betriebsmittel zur Absicherung der Redundanzanforderungen in Betracht; darüber sind einzelfallbezogen entsprechende Abstimmungen bzw. vertragliche Regelungen zu treffen.

Neu zu errichtende Übergabestellen zwischen dem Übertragungsnetz und dem 110-kV-Verteilungsnetz sind einvernehmlich hinsichtlich einer gesamtwirtschaftlich optimalen technischen Lösung zu ermitteln, siehe auch Planungsgrundsätze für 110-kV-Netze [7]. Gleiches gilt sinngemäß für neu zu errichtende Übergabestellen zwischen Übertragungsnetz und industriellen Netznutzern.

Zur Analyse der Strom- und Spannungsbeanspruchung der Betriebsmittel der Übergabestellen sind vor allem nachfolgend genannte Last- und/oder Einspeisefälle fallbezogen in Abstimmung mit dem Netznutzer anzusetzen:

- i. Verteilungsnetzbetreiber
- Vertikale Starklasten in Situationen mit maximaler regionaler Leistungsnachfrage bei minimalem Einsatz von Erzeugungsanlagen im betrachteten Verteilungsnetz.
- Vertikale Rückspeisung aus dem nachgelagerten Verteilungsnetz in das Übertragungsnetz in Situationen mit maximalem Leistungsüberschuss im betrachteten Verteilungsnetz (vor allem bei hoher Einspeiseleistung in Zeiten niedrigen Leistungsbedarfs).
- Vertikale Schwachlasten bzw. niedrige vertikale Rückspeisungen im betrachteten Verteilungsnetz.
- Maßnahmen des Verteilungsnetzbetreibers zur Leistungssteuerung
 (z. B. Demand-Side-Manage-ment, EE-Spitzenkappung) sind einzubeziehen.

ii. Industrielle Netznutzer

- Vertikale Starklasten in Situationen mit maximaler Leistungsnachfrage bei minimalem Einsatz von Erzeugungsanlagen im betrachteten Bereich des Netznutzers.
- Vertikale Schwachlast bzw. vertikale Rückspeisung bei niedrigem Leistungsbedarf und zeitgleichem Einsatz von Erzeugungsanlagen im Bereich des Netznutzers.
- Maßnahmen des industriellen Netznutzers zur Leistungssteuerung (z. B. Demand-Side-Manage-ment) sind einzubeziehen.
- iii. Betreiber von Erzeugungsanlagen
 - Maximale vertikale Einspeisung der Erzeugungsanlage.
 - Maximale vertikale Last der Erzeugungsanlage (hier: Speicheranlage).
 - Vertikale Last bei Stillstand der Erzeugungsanlage (i. d. R. zur Eigenbedarfsversorgung).

Neben der Modellierung der Wirkleistung ist eine praxisgerechte Modellierung der Blindleistung an den Übergabestellen zwischen dem Übertragungsnetz und den Netznutzern erforderlich. Außer den diesbezüglich vereinbarten Blindleistungsbändern und -verhalten sind dazu Analysen der in der Vergangenheit aufgetretenen (gemessenen) Zusammenhänge zwischen Wirk- und Blindleistung heranzuziehen und um Blindleistungsprognosen für den Betrachtungszeitraum zu erweitern. Die Blindleistungsprognosen berücksichtigen geeignet die im nachgelagerten Netz zukünftig erwartete Netz-, Erzeugungs- und Laststruktur.

Bei den Analysen zur Spannungshaltung an den Übergabestellen zwischen ÜNB und Netznutzern sind die vereinbarten Spannungsbänder zu berücksichtigen.

Stand Oktober 2024 Seite 21 von 66

3.6.2 Nahbereich von Netzanschlüssen der Netznutzer

Im Nahbereich von Netzanschlüssen der Netznutzer, d. h. dem unmittelbar vorgelagerten Übertragungsnetz, sind – neben der Berücksichtigung von Netznutzungsfällen die sich aus Marktsimulationen ergeben – zusätzlich Netzanalysen auf Basis von Annahmen des zeitgleichen Maximums der Last- oder Einspeisefälle gemäß Kapitel 3.6.1 der einzelnen Netznutzer durchzuführen.

Ziel dieser Analysen ist die bedarfsgerechte Bemessung des Übertragungsnetzes in Regionen mit Lastund/oder Erzeugungsschwerpunkten. Es soll dabei sichergestellt werden, dass die vertraglich vereinbarten Leistungen aus dem Übertragungsnetz entnommen bzw. in dieses eingespeist werden können.

3.7 Horizontale Übertragungsaufgaben

Grundsätzlich sind für die Analysen zur Bemessung des Übertragungsnetzes für horizontale Übertragungsaufgaben die gemäß Anlage 2 generierten Netznutzungsfälle zu verwenden. Als planungs- und bemessungsrelevant werden diejenigen Netznutzungsfälle ausgewählt, bei denen hinsichtlich Einhaltung der Grenzwerte (Strom und Spannung) unzulässige Werte im Grundfall und bei den Ausfallanalysen gemäß Kapitel 4.2 auftreten.

3.8 Blindleistungsbilanz und Spannungshaltung

Es ist eine möglichst regional ausgeglichene Blindleistungsbilanz mit einem angemessenen Spannungsniveau im Übertragungsnetz netzplanerisch einzustellen, das

- zur Spannungsstabilität des Übertragungsnetzes beiträgt,
- einen stabilen Betrieb von Erzeugungsanlagen ermöglicht,
- in den Übergabestellen zum Netznutzer vertraglich vereinbarte bzw. betrieblich vorgegebene Spannungsbänder einhält,
- die Wirkleistungsverluste reduziert bzw.
- Grenzwertverletzungen vermeidet und
- den regelzonenübergreifenden Blindleistungsfluss möglichst gering hält.

Mit dem Netzausbau und den Maßnahmen zur Höherbelastung des Übertragungsnetzes steigt sowohl der spannungssenkende als auch der spannungshebende Blindleistungskompensationsbedarf. Durch die zunehmend volatilere Netzbelastung, u. a. durch erhöhte Handelsaktivitäten, Wetterumschwünge oder Abschaltzeiten von Windenergieanlagen, treten rasch ändernde Wirkleistungsflüsse im Übertragungsnetz auf. Diese bewirken zeitgleich eine dynamische Veränderung des Blindleistungsbedarfs im Übertragungsnetz, der durch geeignete statische und vor allem dynamische Blindleistungskompensationsanlagen gedeckt werden muss.

Wesentliche Beiträge zur Spannungsstabilität und zur Bereitstellung regelbarer Blindleistung werden bisher vor allem durch die Synchrongeneratoren konventioneller Kraftwerke erbracht. Diese stehen bereits heute marktbedingt nicht immer dann zur Verfügung, wenn sie zur Bereitstellung von Blindleistung für das Übertragungsnetz erforderlich wären; zudem werden sie künftig sukzessive entfallen. Deshalb muss die wegfallende Blindleistungsbereitstellung konventioneller Kraftwerke ebenfalls durch geeignete statische und vor allem dynamische Blindleistungskompensationsanlagen ersetzt werden.

Der Schaltzustand und der Einsatz von Blindleistungskompensationsanlagen im Übertragungsnetz gemäß Kapitel 3.5.1 ist fallbezogen und angemessen zu berücksichtigen. Auch andere Blindleistungsquellen wie Erzeugungsanlagen und HGÜ-Konverterstationen werden entsprechend ihrer technischen Möglichkeiten berücksichtigt.

Die Vorhaltung ausreichend regelbarer Blindleistung zur Beherrschung dynamischer Vorgänge bei Störungen muss in den stationären Netzanalysen (Leistungsfluss) berücksichtigt werden.

Stand Oktober 2024 Seite 22 von 66

Ein höherer Blindleistungstransport über längere Übertragungsstrecken ist grundsätzlich zu vermeiden, damit die vorhandenen Übertragungskapazitäten effektiv zum Wirkleistungstransport genutzt werden können.

An den Übergabestellen zwischen dem Übertragungsnetz und den Netznutzern ist eine praxisgerechte Modellierung der Blindleistung erforderlich, siehe Kapitel 3.6.1.

3.9 Bestimmung des Kurzschlussstromniveaus im AC-Netz

Nachfolgende Fälle sind zu unterscheiden:

- Maximaler Anfangs-Kurzschlusswechselstrom: Auswahl der Netzschaltung und der maximalen Erzeugungs- und Netzeinspeisungen, die zu Höchstwerten des Kurzschlussstromes an der Kurzschlussstelle führen, oder der Netzschaltung für die vorgesehene Netzteilung zur Begrenzung der Kurzschlussströme (nach DIN EN 60909-0 (VDE 0102) [31]).
- 2. Minimaler Anfangs-Kurzschlusswechselstrom: Berücksichtigung angepasster Erzeugungs- und Netzeinspeisungen sowie Netzschaltungen nach der TAR Höchstspannung [4] zur Überprüfung der Einhaltung der Parameter der Spannungsqualität.
- Minimaler Anfangs-Kurzschlusswechselstrom: Berücksichtigung angepasster Erzeugungs- und Netzeinspeisungen sowie Netzschaltungen für die Überprüfung der Schutzanregung (Abschaltung von Betriebsmitteln) und Abschätzung der transienten Stabilität von Erzeugungsanlagen (nach DIN EN 60909-0 (VDE 0102) [31]).

Die Verdrängung konventioneller Erzeugungsanlagen mit Synchrongeneratoren, als bisherige "klassische" Lieferanten von Anfangs-Kurzschlusswechselstromleistung, durch Umrichter-basierte Einspeisungen, ist bei der Ermittlung des bemessungsrelevanten minimalen Anfangs-Kurzschlusswechselstroms zu berücksichtigen.

Stand Oktober 2024 Seite 23 von 66

4 Netztechnische Beurteilungskriterien

4.1 Einleitung

Entsprechend dem Erfordernis und der Zielstellung der Untersuchung sind planungs- und bemessungsrelevante Netznutzungsfälle zumeist auf Basis von Marktsimulationen und der Analyse von relevanten horizontalen und vertikalen Übertragungsaufgaben, unter Berücksichtigung der Randbedingungen nach Kapitel 3 für den zu untersuchenden Planungszeitraum und Ausbaustand des Netzes, zu erstellen.

Marktsimulationen werden in der Netzplanung angewendet, um für ein definiertes energiewirtschaftliches Szenario in einem perspektivischen Planungszeitraum das Geschehen im Strommarkt zu simulieren. Ein Szenario ist durch Annahmen zu wahrscheinlichen Entwicklungen, u. a. von installierten Leistungen der Erzeuger inkl. Speicher, Last und Verbrauch sowie Austauschkapazitäten zwischen Ländern, charakterisiert. Aufbauend auf der notwendigen Last- und Verbrauchsdeckung und dem gesetzlichen Einspeisevorrang der EE- und KWK-Anlagen sowie der Berücksichtigung des Stromhandels im europäischen Elektrizitätsbinnenmarkt ermittelt die Marktsimulation den kostenminimalen Einsatz konventioneller Kraftwerke bzw. Erzeugungsanlagen zur Deckung der Residuallast. Die Marktsimulation liefert dabei je nach Planungszeitraum und Detailtiefe eine bestimmte Anzahl von Einspeise- und Nachfrage- (Last-)Situationen, die als Netznutzungsfälle bezeichnet werden. Diese Netznutzungsfälle sind, aufgeschlüsselt als netzknotenscharfe Einspeise- und Lastsituationen, Eingangsgrößen für die anschließenden Netzanalysen, in denen ausgewählte planungs- und bemessungsrelevante Netznutzungsfälle eingehender untersucht werden (siehe Anlage 1).

Je nach Untersuchungsgegenstand kann sich basierend auf der Analyse der Ergebnisse der Marktsimulation aufgrund betrieblicher und netzplanerischer Erfahrungen – insbesondere mit bereits im Netzbetrieb real aufgetretenen kritischen Netznutzungsfällen – die Notwendigkeit ergeben, zusätzliche Netznutzungsfälle für die Netzanalyse zu bilden. Diese Netznutzungsfälle basieren dabei auf einer plausiblen, aber tendenziell eher selten auftretenden Kombination von Einzelwerten für die Last und Erzeugung sowie für den Austausch mit ausländischen Nachbarnetzen. Ob sie vollumfänglich planungs- und bemessungsrelevant für eine bedarfsgerechte perspektivische Netzstruktur sind, muss technisch untersucht und wirtschaftlich bewertet werden.

Die Netztopologie gemäß Kapitel 3.4 wird mit diesen Netznutzungsfällen für Netzschwächungen gemäß Kapitel 3.5.1 (Einfachausfälle) hinsichtlich der Einhaltung des (n-1)-Kriteriums geprüft. Über das (n-1)-Kriterium hinaus erfolgen Prüfungen für Netzschwächungen gemäß Kapitel 3.5.2 (Nichtverfügbarkeit bzw. Ausfall mehrerer Betriebsmittel). Zusammengefasst sind die vorgenannten Prüfungen in den Anlagen 1 und 2 als Übersicht dargestellt.

Stand Oktober 2024 Seite 24 von 66

4.2 (n-1)- und erweitertes (n-1)-Kriterium

4.2.1 Definition des (n-1)-Kriteriums

Ein Netz ist (n-1)-sicher, wenn bei allen prognostizierten planungs- und bemessungsrelevanten horizontalen und vertikalen Übertragungsaufgaben (Netznutzungsfälle) bei einem (n-1)-Ausfall oder bei einer betriebsbedingten Freischaltung eines Betriebsmittels die Netzsicherheit gewährleistet bleibt.

Dies bedeutet für das betrachtete Netz, dass gemäß Kapitel 3.5.1 sowohl beim (n-1)-Ausfall eines schutzund schaltungstechnisch abgegrenzten Betriebsmittels als auch bei betriebsbedingter Freischaltung folgende Auswirkungen ausgeschlossen sind und zudem keine Folgeauslösungen mit Störungsausweitungen (weitere Schutzauslösungen nach konzeptgemäßer Abschaltung des fehlerbetroffenen Betriebsmittels, sog. Kaskadeneffekt) auftreten:

- Quasistationäre Überschreitungen des zulässigen Engpassstroms gemäß Kapitel 4.4 und 4.6.
- Quasistationäre Verletzungen der Spannungsbänder gemäß Kapitel 4.5.
- Erzeugungs- oder Lastausfälle gemäß Kapitel 4.7.
- Verlust der Stabilität des Netzes gemäß Kapitel 4.8.
- Verletzungen zulässiger Auslegungswerte im Kurzschlussfall gemäß Kapitel 4.9.

Bei der Prüfung auf Einhaltung des (n-1)-Kriteriums hinsichtlich der horizontalen Übertragungsaufgaben des Übertragungsnetzes werden grundsätzlich weder die netztechnischen Möglichkeiten des nachgelagerten 110-kV-Verteilungsnetzes noch Eingriffsmöglichkeiten in die Erzeugung im 110-kV-Verteilungsnetz berücksichtigt. Gleiches gilt sinngemäß für industrielle Netznutzer.

4.2.2 Definition des erweiterten (n-1)-Kriteriums

Der zusätzliche (n-1)-Ausfall eines schutz- und schaltungstechnisch abgrenzbaren Betriebsmittels, z. B. eines Stromkreises oder einer Fernübertragungsverbindung bzw. einer Blindleistungskompensationsanlage, bei zuvor erfolgter betriebsbedingter Freischaltung eines weiteren Betriebsmittels, darf nicht zur Gefährdung der Netzsicherheit bei den zu betrachtenden horizontalen und vertikalen Übertragungsaufgaben führen; Ausnahmen sind in Kapitel 3.6.1 beschrieben (z. B. ggf. vertraglich vereinbarte Redundanzanforderungen).

Die Einhaltung des erweiterten (n-1)-Kriteriums für betriebsbedingte Freischaltungen ist hinsichtlich der horizontalen Übertragungsaufgaben zu prüfen, wenn diese zeitlich nicht variabel gestaltet werden können, beispielsweise durch Verlagerung in geeignete Zeiträume mit geringerem Übertragungsbedarf. In diesen Fällen müssen Auswirkungen gemäß Kapitel 4.2.1 mit hinreichender Sicherheit ausgeschlossen werden können. Ist dies nicht der Fall, müssen die notwendigen netz- und marktbezogenen Maßnahmen zur Anpassung der Übertragungsaufgaben an die Übertragungsfähigkeit des Übertragungsnetzes den ansonsten notwendigen Maßnahmen zur Netzverstärkung oder zum Netzausbau gemäß Kapitel 3.5.3 (Absatz 2) gegenübergestellt werden.

Zur Anpassung der Übertragungsaufgabe von HGÜ-Verbindungen bzw. ihrer Konverterstationen können präventive Maßnahmen, wie z. B. eine Umkonfiguration der oder regelungs- bzw. steuerungstechnische Eingriffe in die HGÜ-Verbindung herangezogen werden.

Die Prüfung des erweiterten (n-1)-Kriteriums umfasst im Regelfall nicht die Sicherstellung der (n-1)-Sicherheit für die vertikale Übertragungsaufgabe an der Übergabestelle zwischen Übertragungs- und Verteilungsnetz während der betriebsbedingten Freischaltung eines Betriebsmittels des Übertragungsnetzbetreibers. Diese bleibt vorrangig der Netzbetriebsplanung und dem Netzbetrieb vorbehalten und wird im Einzelfall zwischen dem Übertragungs- und dem Verteilungsnetzbetreiber geregelt.

Stand Oktober 2024 Seite 25 von 66

Infrage kommt bzw. kommen hierbei z. B.

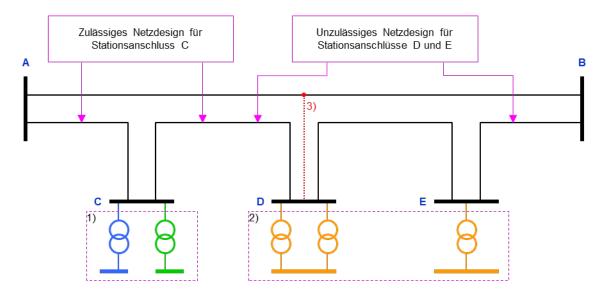
- eine koordinierte Ausschaltplanung zwischen Übertragungs- und Verteilungsnetzbetreiber,
- Aushilfemaßnahmen zwischen Netzgruppen (Teilnetzen) eines Verteilungsnetzbetreibers,
- Aushilfemaßnahmen zwischen Netzgruppen (Teilnetzen) benachbarter Verteilungsnetzbetreiber,
- Einsatz von Erzeugungsanlagen im Verteilungsnetz durch den Verteilungsnetzbetreiber,
- Einsatz von Provisorien durch den Übertragungs- und/oder Verteilungsnetzbetreiber.

Die ggf. notwendigen Maßnahmen werden dabei gemeinsam zwischen Übertragungs- und Verteilungsnetzbetreiber ermittelt und Möglichkeiten des nachgelagerten 110-kV-Verteilungsnetzes in Abstimmung mit dem Verteilungsnetzbetreiber sowohl in der Netzplanung als auch in der Netzbetriebsplanung und im Netzbetrieb berücksichtigt. Gleiches gilt sinngemäß für die Übergabestellen zwischen Übertragungsnetz und industriellen Netznutzern.

Sofern dennoch die Netzsicherheit der vertikalen Übertragungsaufgabe durch die Einhaltung des erweiterten (n-1)-Kriteriums gewährleistet werden soll, dürfen bei (n-1)-Ausfall eines Betriebsmittels bei zuvor erfolgter betriebsbedingter Freischaltung eines weiteren Betriebsmittels im vorgelagerten Übertragungsnetz maximal zwei Transformatoren, die in die gleiche nachgelagerte 110-kV-Netzgruppe (Teilnetz) einspeisen, ausfallen. Damit hat der Übertragungsnetzbetreiber in seinem Verantwortungsbereich hinreichende Vorkehrungen getroffen, damit die betroffene 110-kV-Netzgruppe (Teilnetz) nicht spannungslos werden sollte (Störung der vertikalen Übertragungsaufgabe), vgl. nachfolgende Abbildung 2.

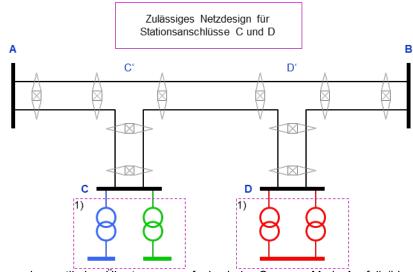
Die Prüfung auf Einhaltung des erweiterten (n-1)-Kriteriums stellt dabei, durch die nach Eintritt der Nichtverfügbarkeit eines Betriebsmittels angepassten Übertragungsaufgaben zur Wiederherstellung der (n-1)-Sicherheit, keine Auslegung des Netzes nach dem (n-2)-Kriterium dar.

4.3 Netzanalysen für Mehrfachfehler


Mit der Prüfung nach dem (n-1)-Kriterium gemäß Kapitel 4.2.1 und dem erweiterten (n-1)-Kriterium gemäß Kapitel 4.2.2 werden in der Netzplanung bedarfsgerechte Netzkonzepte für mittel- bis langfristige Planungszeiträume entwickelt. Für die Bewertung, welches Niveau der Netzsicherheit für die horizontalen und vertikalen Übertragungsaufgaben mit diesen Netzkonzepten erreicht werden kann, ist im Bedarfsfall eine technische Risikobewertung in Bezug auf die Auswirkungen von Mehrfachfehlern durchzuführen. Dazu sind Netzanalysen für ausgewählte Mehrfachfehler (Sammelschienen- und Common-Mode-Ausfälle) durchzuführen.

Für Sammelschienen- und Common-Mode-Ausfälle ist eine eingeschränkte Beherrschung dieser Fehlerszenarien grundsätzlich zulässig. Dies bedeutet, dass Folgeauslösungen toleriert werden, sofern die Störungsausweitung regional begrenzt bleibt und eine regional begrenzte Unterbrechung der vertikalen Übertragungsaufgabe (z. B. Verlust einer 110-kV-Netzgruppe (Teilnetz)) in angemessener Zeit behebbar ist. Die Auswirkungen dieser Szenarien sind unter Berücksichtigung ihrer Eintrittswahrscheinlichkeit durch Netzanalysen zu beurteilen.

Die Bewertung der Beherrschung von Auswirkungen des jeweils analysierten Mehrfachfehlers kann dabei nur individuell in Abhängigkeit der konkreten lokalen, regionalen bzw. überregionalen Netz-, Last- und Erzeugungskonstellation und vorhandener bzw. geplanter Gegenmaßnahmen (z. B. sog. Special Protection Schemes [SpPS]) erfolgen.


In Analogie zu Kapitel 4.2.2 ist für die Netzsicherheit der vertikalen Übertragungsaufgabe sicher zu stellen, dass im Common-Mode-Ausfall maximal zwei Transformatoren ausfallen können, die in die gleiche nachgelagerte 110-kV-Netzgruppe (Teilnetz) einspeisen. Damit sind durch den Übertragungsnetzbetreiber die Voraussetzungen geschaffen, dass die betroffene 110-kV-Netzgruppe (Teilnetz) nicht spannungslos wird (Störung der vertikalen Übertragungsaufgabe), vgl. nachfolgende Abbildung 2.

Stand Oktober 2024 Seite 26 von 66

- 1) Keine Störung der vertikalen Übertragungsaufgabe in der Kombination des (n-1)-Ausfalls eines Betriebsmittels bei bestehender betriebsbedingter Freischaltung eines weiteren bei unterstellter zusätzlicher und ausreichender Speisung der Teilnetze "Blau" und "Grün" aus anderen (nicht dargestellten) Stationen.
- 2) Störung der vertikalen Übertragungsaufgabe in der Kombination des (n-1)-Ausfalls eines Betriebsmittels (Stromkreis C D) bei bestehender betriebsbedingter Freischaltung eines weiteren (Stromkreis B E) bei angenommener Speisung des Teilnetzes "Gelb" ausschließlich aus den dargestellten Stationen.
- 3) Die Erweiterung des Netzanschlusses der Station D (z. B. mittels zusätzlicher Stichanschaltung oder Doppeleinschleifung) bzw. dessen Umbau (Einschleifung in den oberen Stromkreis A B) führt zu einem zulässigen Netzkonzept für die Beherrschung der Kombination des (n-1)-Ausfalls eines Betriebsmittels bei bestehender betriebsbedingter Freischaltung eines weiteren für die Stationsanschlüsse D und E.

Abbildung 2: Erweitertes (n-1)-Kriterium (Einhaltung des (n-1)-Kriteriums bei zuvor erfolgter betriebsbedingter Freischaltung) für Stationsanschlüsse an der Übergabestelle ÜNB – VNB

1) Keine Störung der vertikalen Übertragungsaufgabe beim Common-Mode-Ausfall (hier zeitgleicher Ausfall zweier Stromkreise in einem der u. g. Leitungsabschnitte) bei unterstellter zusätzlicher und ausreichender Speisung der Teilnetze "Blau", "Grün" und "Rot" aus anderen (nicht dargestellten) Stationen.

Der Common-Mode-Ausfall bezieht sich im dargestellten Beispiel auf die einzelnen Leitungsabschnitte A-C', C'-D', D'-B, C'-C oder D'-D.

Abbildung 3: Common-Mode-Ausfall für Stationsanschlüsse an der Übergabestelle ÜNB – VNB

Stand Oktober 2024 Seite 27 von 66

4.4 Leistungsfluss – Thermische Belastungsgrenzen

4.4.1 Drehstrom-Übertragungsnetz

4.4.1.1 Belastbarkeit von Betriebsmitteln – Allgemein

a) Grundfall und (n-1)-Ausfall

Für alle Übertragungsaufgaben dürfen sowohl im Grundfall als auch nach einem (n-1)-Ausfall keine Überschreitungen der zulässigen Belastbarkeit von Betriebsmitteln auftreten.

b) Erweiterter (n-1)-Ausfall

Nach einem (n-1)-Ausfall bei zuvor erfolgter betriebsbedingter Freischaltung eines weiteren Betriebsmittels (erweitertes (n-1)-Kriterium mit angepassten Übertragungsaufgaben gemäß Kapitel 4.2.2) dürfen ebenfalls keine Überschreitungen der zulässigen Stromtragfähigkeit von Betriebsmitteln auftreten.

c) Sammelschienen- und Common-Mode-Ausfall

Grundsätzlich ist für Sammelschienen- und Common-Mode-Ausfälle eine eingeschränkte Beherrschung gemäß Kapitel 4.3 zulässig. Der dabei zulässige Engpassstrom für Stromkreise im 380-kV-Netz ist in Kapitel 4.6 definiert.

4.4.1.2 Belastbarkeit von Schaltanlagen

Schaltanlagen (hierzu zählen auch Umspannwerke) sind in der Netzausbauplanung entsprechend ihren Anforderungen auszulegen. Schaltanlagen bestehen aus mehreren einzelnen Komponenten (z. B. Sammelschienen, Leistungsschalter, Trenner, Wandler etc.). Diese Komponenten sind so auszulegen, dass die gesamte Konstruktion der Schaltanlage die an sie gestellten Anforderungen erfüllt.

Im Wesentlichen werden die Anforderungen an eine Schaltanlage durch die Anzahl der Schaltfelder sowie durch die zu erwartenden Strombelastungen (inkl. Kurzschluss) bestimmt. Zudem sind ggf. Anforderungen hinsichltich zulässiger Zustände für den Netzbetrieb bei der Konstuktion von Schaltanlagen zu berücksichtigen.

Eine wesentliche Anforderung ist, dass die Übertragungsfähigkeit innerhalb der Schaltanlagen im Einklang mit der Übertragungsfähigkeit der angeschlossenen Stromkreise¹⁸ ist. Vor dem Hintergrund der höheren Belastung des Übertragungsnetzes (z. B. durch die witterungsabhängige Belastbarkeit von Freileitungen; Kapitel 4.4.1.5) sind Schaltanlagen dahingehend zu prüfen, ob gemäß dem NOVA-Prinzip (Kapitel 5) eine Verstärkung oder ein Neubau erforderlich ist. Dies ist insbesondere bei Bestandsanlagen erforderlich, wenn eine höhere Belastung von Stromkreisen kurzfristig ermöglicht werden könnte.

Der Netzausbau, sowohl in horizontaler als auch in vertikaler Richtung, hat tendenziell eine Erhöhung des Vermaschungsgrades des Übertragungsnetzes zur Folge. Dies führt üblicherweise zu einer Erhöhung der im Fehlerfall auftretenden Kurzschlussströme. Die Schaltanlagen müssen eine ausrreichend hohe thermische sowie mechanische Kurzschlussströmfestigkeit hinsichtlich ihrer Konstruktion aufweisen. Zur Bestimmung der auftretenden Kurzschlussströme sind die Erläuterungen in Kapitel 4.9 zu beachten.

Stand Oktober 2024 Seite 28 von 66

¹⁸ Hierbei ist zu beachten, dass auf den Sammelschienen deutlich höhere Strombelastungen auftreten können als in den Schaltfeldern.

Gemäß EN IEC 62271-102 Hochspannungs-Schaltgeräte und -Schaltanlagen [9] kann ein Trenner einen Stromkreis öffnen und schließen, wenn entweder nur ein vernachlässigbarer Strom aus- oder eingeschaltet (bis 0,5 A bei 420 kV) wird oder keine wesentliche Spannungsänderung zwischen den Anschlüssen jedes Trennschalterpols auftritt. Dies begrenzt die maximale Länge des unter Spannung zu setzenden Sammelschienenabschnittes.Bei der Planung von Schaltanlagen sind die Kriterien zum Verlust von Erzeugung und Last gemäß Kapitel 4.7 zu beachten.

4.4.1.3 Belastbarkeit von Transformatoren

Transformatoren sind entsprechend der Belastungsrichtlinie für Transformatoren (DIN IEC 60076-7 (VDE 0532-76-7) [10]) generell so ausgelegt, dass sie permanent mit ihrer Bemessungsleistung bei einer Umgebungstemperatur von 40 °C betrieben werden können. Die Belastbarkeit von Transformatoren kann davon abweichen, wenn eine zyklische Belastung vorliegt. Dabei wird der Vorteil niedriger Umgebungstemperaturen oder niedriger Lastströme im Lastzyklus (die sog. Vorbelastung) ausgenutzt.

Die Belastbarkeit wird im Wesentlichen durch drei Größen mit unterschiedlichen Zeitkonstanten bestimmt (Wicklungstemperatur, Öltemperatur und der sog. Grenzstrom, der aufgrund von Streufeldeffekten oder Komponenten nicht überschritten werden darf). Die Umgebungstemperatur und die Kühlungsart haben dabei Einfluss auf die Öltemperatur. Weitere Bedingungen bzw. Parameter können die Belastbarkeit von Transformatoren beeinflussen, wie z. B. der Einfluss einer Transformator-Einhausung (Schallschutz) auf die Kühlungsbedingungen und eine mögliche Leistungsentnahme aus der Tertiärwicklung (Kompensationsspulen); vgl. (DVG-) "Überlegungen zur Nutzung von Reserven der Belastbarkeit von Netzbetriebsmitteln" [11].

4.4.1.4 Belastbarkeit von Freileitungen – Beeinflussungsfragen

Grundsätzlich ist bei einer geplanten Erhöhung der Engpassströme von Freileitungen (z. B. Einsatz von HTL/HTLS-Beseilung, witterungsabhängiger Freileitungsbetrieb), zu überprüfen, ob

- die in der 26. BImSchV (Verordnung über elektromagnetische Felder) und der 26. BImSchVVwV (Allgemeine Verwaltungsvorschrift zur Durchführung der Verordnung über elektromagnetische Felder 26. BImSchV) genannten Anforderungen weiterhin eingehalten werden und
- die induktive Beeinflussung der Nachbarinfrastrukturen (z. B. Rohrleitungen oder Telekommunikationsanlagen) weiterhin im normativ zulässigen Bereich bleiben (u. a. DIN VDE 0845-6-1 [12] und -2 [13], DIN EN 50443 (VDE 0845-8) [14] und DVGW GW 22 Arbeitsblatt [15]).

4.4.1.5 Witterungsabhängige Belastbarkeit von Freileitungen

In Abhängigkeit der Umgebungsbedingungen ist in der Netzplanung eine Belastbarkeit von Freileitungsstromkreisen regional von bis zu 150 % des Leiterseilstroms, der unter den Normbedingungen gemäß DIN 50341-1 (VDE 0210-1) [16] zur dauerhaft zulässigen Leiterseiltemperatur von 80 °C¹⁹ nach DIN 50182 [17] führt, zulässig. Dies gilt sowohl bei höheren Windgeschwindigkeiten als auch bei niedrigeren Umgebungstemperaturen gegenüber den Normbedingungen gemäß DIN 50341-1 (VDE 0210-1) [16], da sie zu einer stärkeren Kühlung der Leiterseile führen. Diese Witterungsabhängigkeit der Leiterseiltemperatur von der Windgeschwindigkeit und/oder der Umgebungstemperatur erlaubt daher eine höhere Strombelastbarkeit bis zum Erreichen der dauerhaft zulässigen Leiterseiltemperatur im Vergleich zu den Normbedingungen gemäß DIN 50341-1 (VDE 0210-1) [16].

Historische Wetterdaten, die zeitlich und topologisch hoch aufgelöst für Deutschland verfügbar sind, können als Eingangsdaten für die Ermittlung der maximal zulässigen Strombelastbarkeiten verwendet werden.

Stand Oktober 2024 Seite 29 von 66

-

¹⁹ Die Anwendung der witterungsabhängigen Strombelastbarkeit für Freileitungen, die für eine Leiterseilendtemperatur kleiner als 80 °C trassiert und errichtet wurden, bedarf – neben der ohnehin obligatorischen Prüfung gemäß VDE-AR-N 4210-5 Anwendungsregel Witterungsabhängiger Freileitungsbetrieb [18] – einer Prüfung und Entscheidung im Einzelfall.

Von besonderer Relevanz sind dabei die Windgeschwindigkeit und Umgebungstemperatur, die den signifikant größten Einfluss auf die Leiterseiltemperatur und damit die zulässige witterungsabhängige Strombelastbarkeit von Freileitungen haben.

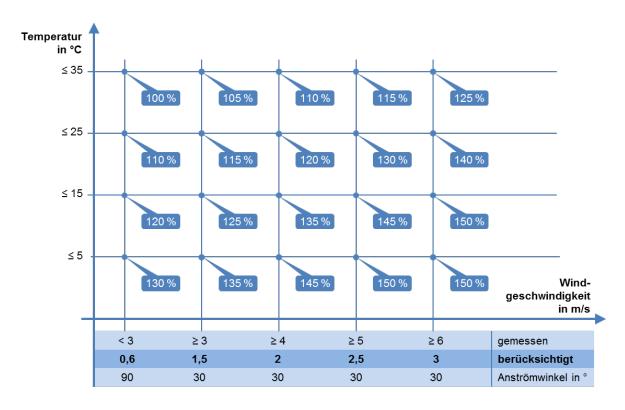
Für die Anwendung in der Netzplanung darf dabei einerseits das nutzbare Potential der witterungsabhängigen Strombelastbarkeit von Freileitungen nicht überschätzt werden. Andererseits muss eine einfache Handhabbarkeit der Methodik zur planerischen Ermittlung der Strombelastbarkeiten, die nachfolgend dargestellt wird, gewährleistet werden.

Das deutsche Übertragungsnetz wird gemäß nachfolgender Abbildung 4 in neun Regionen²⁰ gegliedert:

Abbildung 4: Regionale Gliederung des Übertragungsnetzes zur Ermittlung witterungsabhängiger Strombelastbarkeiten von Freileitungen²¹

Für jede dieser neun Regionen wird aus den verfügbaren Wettermessdaten die gemessene höchste Temperatur und niedrigste Windgeschwindigkeit ermittelt. Diese beiden stündlich aufgelösten Werte je Region bilden, unter Berücksichtigung der nachfolgend genannten Faktoren, die Grundlage für die Berechnung der maximal zulässigen prozentualen Strombelastbarkeit (thermischer Engpassstrom). Diese wird allen Freileitungen in der betreffenden Region zugewiesen, die für einen witterungsabhängigen Betrieb geeignet sind.

Stand Oktober 2024 Seite 30 von 66


²⁰ Untersuchung zur Weiterentwicklung der Methodik zur Berücksichtigung der witterungsabhängigen Freileitungsbelastbarkeit in der Ausbauplanung des deutschen Übertragungsnetzes, Th. Kanefendt et al., Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE, Kassel, Mai 2019 [19]

²¹ Topographische Karte von Deutschland, © www.mygeo.info

Bei den gemessenen Windgeschwindigkeiten werden analog zur dena-Netzstudie II [20] zur Berücksichtigung des Leitungsverlaufs Faktoren angesetzt, die ungünstige Anströmwinkel am Leiterseil (Winkel kleiner 90°)²² und mögliche Abschattungen (Leitungsverlauf z. B. in Tälern oder Waldschneisen) berücksichtigen.

Für die Berechnung der witterungsabhängigen Strombelastbarkeit wird bei der Globalstrahlung grundsätzlich die Normbedingung gemäß DIN 50341-1 (VDE 0210-1) [16] von 900 W/m² angesetzt. Weitere Parameter, die in die Berechnung eingehen (z. B. Höhe über NN, Emissions- und Absorptionskoeffizient, usw.), auch in die gemäß folgender Abbildung 5, wurden nach den Empfehlungen der u. g. Studie²³ angewendet.

Nachfolgende Abbildung 5 zeigt die, mit der oben beschriebenen Methodik berechneten, prozentualen Strombelastbarkeiten in Abhängigkeit von der (gemessenen) Umgebungstemperatur und (berücksichtigten) Windgeschwindigkeit. Die Ergebnisse wurden dabei zum Teil auf die in der Abbildung ausgewiesenen prozentualen Strombelastbarkeiten gerundet.

Abbildung 5: Prozentuale Strombelastbarkeiten in Abhängigkeit von Umgebungstemperatur und Windgeschwindigkeit (Berechnung mit dem CIGRE-Verfahren²⁴)

Die jeweils pro Region und Stunde festgestellte höchste gemessene Temperatur und berücksichtigte niedrigste Windgeschwindigkeit bestimmen gemeinsam die prozentual maximal zulässige witterungsabhängige Strombelastbarkeit. Dabei wird diese Kombination von Temperatur und Windgeschwindigkeit der jeweils unmittelbar benachbarten kleinsten prozentualen Strombelastbarkeit (Gitterpunkt) zugewiesen. Dieser zugewiesene Prozentwert (Gitterpunkt) wird als regionale Strombelastbarkeit für die Netzanalysen verwendet.

Stand Oktober 2024 Seite 31 von 66

-

²² In Schwachwind-Fällen wird unterhalb einer gemessenen minimalen Windgeschwindigkeit von 1,2 m/s grundsätzlich der DIN-Wert von 0,6 m/s am Leiterseil mit einer senkrechten Anströmung (90°) angesetzt, da in diesen Fällen die Thermik um das Leiterseil wirkt (Differenz aus Seil- und Umgebungstemperatur). Erst bei gemessenen Windgeschwindigkeiten über 1,2 m/s wird demnach die 30°- Anströmung ohne Einschränkung angesetzt.

²³ Untersuchungen zur witterungsabhängigen Strombelastbarkeit von Freileitungen für Netzausbauplanungen und Netzbetrieb, Dr.-Ing. Ralf Puffer, Institut für Hochspannungstechnik der RWTH Aachen, November 2017 [21]

²⁴ Cigré Technical Brochure 207, The thermal behaviour of overhead conductors, August 2002 [22]

Die 100-%-Strombelastbarkeit bei den Normbedingungen gemäß DIN 50341-1 (VDE 0210-1) [16] (Umgebungstemperatur 35 °C, Windgeschwindigkeit 0,6 m/s bei senkrechter Anströmung und Globalstrahlung 900 W/m²) bildet die untere Grenze der witterungsabhängigen Strombelastbarkeit. Als obere Grenze der witterungsabhängigen Strombelastbarkeit werden bis zu 150 % zugelassen – unter Beachtung der nachfolgend genannten Prüfung auf technische Eignung.

Vor einer planerischen Berücksichtigung der Abhängigkeit der Strombelastbarkeit von Freileitungen von den Umgebungsbedingungen sind die betroffenen Betriebsmittel eines Stromkreises (Leiterseile und Armaturen, Schaltgeräte, Wandler, Schaltfeldbeseilungen, etc.) auf ihre technische Eignung zur Beherrschung einer höheren Strombelastbarkeit zu prüfen (vgl. VDE-AR-N 4210-5 Anwendungsregel Witterungsabhängiger Freileitungsbetrieb [18]).

4.4.1.6 Belastbarkeit von Kabeln

Für Kabelstromkreise bzw. Teilverkabelungsabschnitte gilt:

Die thermische Strombelastbarkeit eines Kabels für den auslegungsrelevanten Fall sollte für Netzanalysen dem Datenblatt des Herstellers oder einschlägigen Normen (IEC 60287-1-1 [23], IEC 60853-2 [24], DIN VDE 0276-1000 (DIN VDE 0276-1000) [25]) entnommen werden. Darüber hinaus sollten geeignete Wärmeausbreitungsmodelle für Szenarien mit zeitvariablen Belastungszuständen genutzt werden. Dabei sind die Verlegebedingungen, wie Verlegeanordnung, Mantelschirmbehandlung, Verlegetiefe, thermische Eigenschaften des umgebenden Bodens bzw. eines Schutzrohres sowie Fremdwärmequellen zu berücksichtigen.

4.4.1.7 Belastbarkeit von Freileitungsstromkreisen mit Teilverkabelungsabschnitten

Für einen Freileitungsstromkreis mit Teilverkabelungsabschnitt(en) gemäß Kapitel 4.4.1.4 bis 4.4.1.6 definiert der jeweils kleinste Wert der nach den obigen Methoden ermittelten thermischen Engpassströme von Freileitungs- und Kabelabschnitten den zulässigen thermischen Engpassstrom des Stromkreises.

4.4.2 HGÜ-Verbindungen / HGÜ-Konverterstationen

a) Grundfall und (n-1)-Ausfall

Im Grundfall und nach dem (n-1)-Ausfall²⁵ einer HGÜ-Verbindung (Punkt-zu-Punkt-Verbindungen bzw. Multiterminal-Systeme) bzw. ihrer HGÜ-Konverterstationen dürfen keine quasistationären Überschreitungen der zulässigen Stromtragfähigkeit von AC- oder DC-Betriebsmitteln auftreten.

Im stationären Betriebszustand ist für HGÜ-Konverterstationen durch deren Regelung und Steuerbarkeit eine Überschreitung ihres Nennstromes ausgeschlossen.

Die technologische Ausgestaltung einer HGÜ-Verbindung bzw. ihrer HGÜ-Konverterstationen bestimmen den Ausfallumfang im (n-1)-Fall.

Das Systemverhalten wird durch die dann verbleibende Übertragungsleistung der HGÜ-Verbindung und die Blindleistungsbereitstellung durch die HGÜ-Konverterstationen bestimmt.

Stand Oktober 2024 Seite 32 von 66

²⁵ inkl. DC-Sammelschienen-Fehler

Für den (n-1)-Ausfall einer HGÜ-Verbindung bzw. ihrer HGÜ-Konverterstationen ist in Abhängigkeit der Ausgestaltungsvariante und des Technologiekonzeptes unter Berücksichtigung der schutz- und schaltungstechnisch abgrenzbaren Bereiche entweder

- der Vollausfall (gesamte Übertragungsleistung und Blindleistungsbereitstellung durch die HGÜ-Konverterstationen) oder
- der Teilausfall (reduzierte Übertragungsleistung und Blindleistungsbereitstellung durch die HGÜ-Konverterstationen)

planungs- und bemessungsrelevant. Für die Berücksichtigung eines Teilausfalls ist dabei die Kenntnis der Ausgestaltungsvariante und des Technologiekonzeptes der HGÜ-Verbindung bzw. ihrer HGÜ-Konverterstationen, unter Berücksichtigung der schutz- und schaltungstechnisch abgrenzbaren Bereiche, zwingende Voraussetzung einer planerischen Anwendung²⁶. Korrektive Maßnahmen, wie z. B. eine Umkonfiguration der oder regelungs- bzw. steuerungstechnische Eingriffe in die HGÜ-Verbindung, sind hierbei nicht zu berücksichtigen.

Die Redundanzen im Drehstromnetz werden für den Ausfall einer übertragenen HGÜ-Leistung von bis zu 2.000 MW ausgelegt.

Weiterhin sind die Regeln für den Anschluss von HGÜ-Systemen gemäß TAR HGÜ [26] zu beachten.

b) Erweiterter (n-1)-Ausfall

Nach dem (n-1)-Voll- oder Teil-Ausfall einer HGÜ-Verbindung (Punkt-zu-Punkt-Verbindungen bzw. Multiterminal-Systeme) bzw. ihrer HGÜ-Konverterstationen bei zuvor erfolgter betriebsbedingter Freischaltung einer anderen HGÜ-Verbindung bzw. ihrer HGÜ-Konverterstationen (erweitertes (n-1)-Kriterium mit angepassten Übertragungsaufgaben gemäß Kapitel 4.2.2) dürfen ebenfalls keine quasistationären Überschreitungen der zulässigen Stromtragfähigkeit von Betriebsmitteln auftreten. Gleiches gilt für die Kombination des (n-1)-Voll- oder Teil-Ausfalls einer HGÜ-Verbindung bzw. ihrer HGÜ-Konverterstationen bei zuvor erfolgter betriebsbedingter Freischaltung einer Drehstrom-Verbindung.

Die Zeitdauer der fehlerbedingten Nichtverfügbarkeit einer HGÜ-Verbindung (Fernübertragungsverbindung) ist mit deutlich längeren (Kabel-) Streckenlängen im Vergleich zu einer deutlich kürzeren Drehstrom-Freileitungsverbindung signifikant größer. Daher ist das erweiterte (n-1)-Kriterium bei HGÜ-Verbindungen (Fernübertragungsverbindungen) gemäß Kapitel 3.5.2 und Tabelle 1 bzgl. ihrer Auswirkungen auf die horizontale Übertragungsaufgabe für netzsicherheitsrelevante Betrachtungen im Rahmen der Netzplanung heranzuziehen.

c) Sammelschienen- und Common-Mode-Ausfall

Für Sammelschienen- und Common-Mode-Ausfälle einer HGÜ-Verbindung (Punkt-zu-Punkt-Verbindungen bzw. Multiterminal-Systeme) bzw. ihrer HGÜ-Konverterstationen gilt grundsätzlich eine eingeschränkte Beherrschung gemäß Kapitel 4.3.

Sammelschienen- und Common-Mode-Ausfälle von HGÜ-Verbindungen bzw. von HGÜ-Konverterstationen sind durch die in Kapitel 4.4.2, Punkt a) genannten Redundanzen im Drehstromnetz und zusätzliche Gegenmaßnahmen (z. B. sog. Special Protection Schemes [SpPS]) zu beherrschen.

Stand Oktober 2024 Seite 33 von 66

²⁶ Änderungen der Ausgestaltungsvariante und des Technologiekonzeptes einer HGÜ-Verbindung bzw. ihrer HGÜ-Konverterstationen führen zur planerischen Überprüfung gemäß der Ausführungen in Kapitel 5 und Anlage 1.

Die Zulässigkeit und Wirksamkeit möglicher SpPS muss vor ihrer Einführung durch Systemstudien unter Berücksichtigung relevanter Netznutzungsfälle nachgewiesen und mit betroffenen Netzbetreibern und Netznutzern abgestimmt werden.

Der Ausfall einer Sammelschiene oder eines Sammelschienenabschnitts darf gemäß Kapitel 4.7 nicht zu einem Erzeugungs- oder Lastausfall von mehr als 2.000 MW führen. Dies gilt auch für HGÜ-Verbindungen zwischen Synchrongebieten und für HGÜ-Offshore-Netzanbindungen (Punkt-zu-Punkt-Verbindungen bzw. Multiterminal-Systeme).

Sammelschienen- bzw. Common-Mode-Ausfälle von HGÜ-Verbindungen bzw. ihrer HGÜ-Konverterstationen sind grundsätzlich durch geeignete Anlagenkonzepte und eine entsprechende räumliche Anordnung zu vermeiden.

Um die Auswirkungen eines Common-Mode-Ausfalls zu begrenzen, wird derzeit für den Erstausbau von HGÜ-Verbindungen bei denen in Abschnitten Freileitungen und/oder Kabel zum Einsatz kommen sollen, eine maximale Übertragungsleistung von 4.000 MW pro Trasse (Mastgestänge einer Doppel-Freileitung bzw. ein Kabelgraben mit zwei Kabelsystemen) angesetzt.

4.5 Leistungsfluss - Blindleistungsbilanz und Spannungen

4.5.1 Blindleistungsbilanz

Im Grundfall und (n-1)-Ausfall ist ein regional ausgeglichener Blindleistungshaushalt anzustreben. Insbesondere der regelzonenübergreifende Blindleistungsfluss ist dabei möglichst gering zu halten.

Da der in Kapitel 4.4.2 beschriebene Voll- oder Teil-Ausfall von HGÜ-Verbindungen (Punkt-zu-Punkt-Verbindungen bzw. Multiterminal-Systeme) und ihrer HGÜ-Konverterstationen große Auswirkungen auf die lokale/regionale/überregionale Blindleistungsbilanz hat, sind solche Voll- oder Teil-Ausfälle im Kontext dieses Kapitels zu beachten.

4.5.2 Spannungsgrenzen

Grundfall und (n-1)-Ausfall

Der Grundfall und der (n-1)-Ausfall gemäß Kapitel 4.2.1 dürfen nicht zur Unterschreitung der dauerhaft zulässigen minimalen Betriebsspannungen im 380/220-kV-Übertragungsnetz führen, um das Risiko eines Spannungskollapses zu minimieren.

Die zulässigen maximalen Betriebsspannungen dürfen im Grundfall und (n-1)-Ausfall nicht überschritten werden, um Beschädigungen von Betriebsmitteln zu vermeiden (Einhaltung der höchsten Spannung für Betriebsmittel).

Im Grundfall sind folgende Spannungsbänder zulässig:

$$U_{min} = 390 \text{ kV} \dots U_{max} = 420 \text{ kV}$$

$$U_{min}$$
 = 220 kV ... U_{max} = 245 kV²⁷

Stand Oktober 2024 Seite 34 von 66

²⁷ Durch die sukzessive Ablösung des 220-kV- durch das 380-kV-Netz ist einerseits grundsätzlich ein größeres 220-kV-Spannungsband zulässig und andererseits in Abhängigkeit der konkreten Netz-, Last- und Erzeugungskonstellation die Einhaltung des minimalen 220-kV-Spannungswertes beim (n-1)-Ausfall ggf. nur eingeschränkt möglich.

Im Grundfall wird für das 380-kV-Übertragungsnetz ein möglichst hohes Spannungsprofil innerhalb des o. g. Spannungsbandes angestrebt, damit ein technisch-wirtschaftlicher Netzbetrieb hinsichtlich Wirkleistungstransport, Spannungshaltung/Blindleistungshaushalt, Stabilitätsreserven und Netzverlustreduzierung ermöglicht wird.

Folgende sog. Sollspannungsbänder sollten daher im Grundfall eingehalten werden:

$$U_{soll} = 410 \dots 419 \text{ kV}$$

 $U_{soll} = 230 \dots 244 \text{ kV}^{27}$

Im (n-1)-Ausfall sind folgende Spannungsbänder einzuhalten:

$$U_{min} = 380 \text{ kV} \dots U_{max} = 420 \text{ kV}$$

 $U_{min} = 210 \text{ kV} \dots U_{max} = 245 \text{ kV}^{27}$

Im Grundfall und (n-1)-Ausfall dürfen die Grenzen des Generatordiagramms der Synchronmaschine unter Einhaltung der Sollspannungsvorgabe an der Generatorklemme nicht verletzt werden.

Ergänzend zur Einhaltung der o. g. Spannungsbänder ist ein regional ausgeglichener Blindleistungshaushalt im Übertragungsnetz anzustreben.

Die an den Übergabestellen zwischen ÜNB und Netznutzern vereinbarten Spannungsbänder sind zu berücksichtigen.

b) Erweiterter (n-1)-Ausfall

Für den erweiterten (n-1)-Ausfall gelten, unter Berücksichtigung angepasster Übertragungsaufgaben gemäß Kapitel 4.2.2, die gleichen Spannungswerte wie im (n-1)-Ausfall.

c) Sammelschienen- und Common-Mode-Ausfall

Für eingeschränkt zu beherrschende Sammelschienen- und Common-Mode-Ausfälle im 380-kV-Netz beträgt

$$U_{min} = 370 \text{ kV}.$$

In diesen Fällen dürfen die Grenzen des Generatordiagramms der Synchronmaschine erreicht werden, jedoch muss die Generatorspannung im Bereich von 95 % bis 105 % der Nennspannung bleiben bzw. es darf nicht zur Netztrennung durch Übererregung kommen. Der ggf. darüber hinaus gehende Bedarf an dynamisch regelbarer Blindleistungsbereitstellung ist u. a. anhand von dynamischen Simulationen kritischer Fehlerfälle zu ermitteln.

4.5.3 Blindleistungs- und Spannungsänderungen

Änderungen des Blindleistungsbedarfs im Übertragungsnetz müssen im Grundfall zwischen zwei unmittelbar aufeinander folgenden Netznutzungsfällen und in Ausfallsituationen (inkl. Sammelschienen- und Common-Mode-Ausfall) innerhalb eines regional begrenzten Bereichs durch dynamische Blindleistungsquellen (Erzeugungsanlagen, Blindleistungskompensationsanlagen und HGÜ-Konverter) ausgeglichen werden.

Stand Oktober 2024 Seite 35 von 66

Beim (n-1)-Ausfall und erweiterten (n-1)-Ausfall sowie beim Sammelschienen- und Common-Mode-Ausfall beträgt die maximal zulässige Differenz des quasistationären Spannungsbetrages für das 380/220-kV-Übertragungsnetz im Regelfall +/- 5 % gegenüber dem ungestörten Betrieb (Grundfall). Sie gilt unter der Maßgabe der Einhaltung der Spannungsbänder für den (n-1)-Ausfall gemäß Kapitel 4.5.2, Absatz a) und unter der Maßgabe, dass die maximal zulässige Spannungsdifferenz mit einem wirtschaftlich vertretbaren Aufwand erreichbar ist.

Spannungsänderungen insbesondere durch **Schaltung statischer Blindleistungskompensationsanlagen** im 380/220-kV-Übertragungsnetz sollen im Regelfall eine Differenz des Spannungsbetrags von +/- 2 % nicht überschreiten. ²⁸ Die Spannungsänderungen sind abweichend zur Leistungsflussberechnung über das Verhältnis der zu schaltenden Blindleistung zur Netzkurzschlussleistung zu ermitteln. Als relevante Kurzschlussleistung wird dabei die für die Berechnung der Spannungsänderung gemäß der TAR Höchstspannung [4] zu ermittelnde minimale Kurzschlussleistung herangezogen. Bei deren Ermittlung wird zusätzlich das Betriebsmittel, welches am betreffenden Netzknoten den größten Beitrag zur Kurzschlussleistung liefert, als nicht verfügbar angesetzt.

Bei Spannungsänderungen insbesondere durch Änderungen des Blindleistungsbedarfs zwischen Netznutzungsfällen sind die Spannungsbänder gemäß Kapitel 4.5.2 im Grundfall einzuhalten; zudem ist dabei eine Differenz des Spannungsbetrags von +/- 2 % im Regelfall nicht zu überschreiten.

4.5.4 Spannungswinkeldifferenz

Durch die **Zu- bzw. Abschaltung eines Stromkreises** können, abhängig von der Spannungswinkeldifferenz zwischen den Netzknoten, die der Stromkreis verbindet, hohe Ausgleichsströme auftreten, die zu Schutzauslösungen durch Überstrom führen können. Darüber hinaus können die bei der Zu- bzw. Abschaltung auftretenden Änderungen der Spannungswinkel, besonders an Sammelschienen mit geringer Kurzschlussleistung, zu einer unzulässigen Belastung der im unmittelbaren Beeinflussungsbereich befindlichen Synchrongeneratoren führen.

Daher bestehen aus Stabilitätssicht netzseitig hinreichende Voraussetzungen für einen sicheren Netz- und Systembetrieb dann, wenn die Änderung des Spannungswinkels an einem Netzknoten mit angeschlossenen Synchrongeneratoren bei der Zu- bzw. Abschaltung eines Stromkreises nicht mehr als 10 Grad beträgt. Dieser Wert definiert sich aus der Differenz der Spannungswinkel mit und ohne Zu- bzw. Abschaltung des Stromkreises, unter der Voraussetzung, dass bei der Leistungsflussberechnung der Winkelbezugspunkt (Spannungs-Referenzpunkt) ausreichend elektrisch weit entfernt gewählt wird. Im Regelfall ist eine ausreichende Indikation für die Erfüllung dieses Kriteriums gegeben, wenn die Spannungswinkeldifferenz zwischen der Sammelschiene und dem offenen Ende eines daran angeschalteten Stromkreises maximal 20 Grad beträgt. Anderenfalls sind Einzelfallprüfungen zur zulässigen Höhe der Spannungswinkeldifferenz vorzunehmen.

4.6 Leistungsfluss – Schutz- und Stabilitätsengpassströme

Für 380-kV-Stromkreise gilt, dass der zulässige Engpassstrom aus dem jeweils kleinsten Wert des thermischen Engpassstroms sowie des Schutz- und des Stabilitätsengpassstroms bestimmt wird. Bei den nachfolgend beschriebenen Ausfällen von 380-kV-Stromkreisen darf es weder zu Schutzauslösungen noch zum Verlust der Systemstabilität kommen. Der Stabilitätsengpassstrom ist u. a. von der Übertragungsentfernung sowie der netzseitig anstehenden Anfangs-Kurzschlusswechselstromleistung (Sk") abhängig.

Stand Oktober 2024 Seite 36 von 66

²⁸ Blindleistungskompensationsanlagen unterliegen einer höheren Schalthäufigkeit im Vergleich z. B. zu Stromkreisen oder Transformatoren, so dass die aus den Spannungsänderungen durch die Schaltung hervorgerufenen Flicker, u. a. hinsichtlich ihrer Auswirkungen bei nachgelagerten Netznutzern, zu limitieren sind (vgl. DIN EN 50160 [27]).

Der thermische Engpassstrom kann einerseits die zulässige Belastungsgrenze bilden, wenn im (n-1)-Ausfall die Netzstabilität nicht gefährdet wird. Andererseits kann die stabilitätskritische Strombelastung im (n-1)-Ausfall auch unterhalb des thermischen Engpassstroms liegen. Die zulässigen Stabilitätsengpassströme für 380-kV-Stromkreise müssen daher durch Stabilitätsuntersuchungen bestimmt und bei der Festlegung des Engpassstroms gemäß Absatz 1 berücksichtigt werden.

Ebenso müssen schutztechnische Aspekte des Netzbetriebes berücksichtigt werden. Da diese von der konkreten Netz-, Last- und Erzeugungskonstellation abhängig sind, kann – analog zum Stabilitätsengpassstrom – ebenfalls auch der Schutzengpassstrom unterhalb des thermischen Engpassstroms liegen. Insofern kann für 380-kV-Stromkreise gemäß Absatz 1 entweder der thermische Engpassstrom die zulässige Belastungsgrenze bilden oder der Schutz- bzw. Stabilitätsengpassstrom die zulässige Strombelastbarkeit bereits unterhalb des thermischen Engpassstroms limitieren.

a) Grundfall und (n-1)-Ausfall

Mit einem Engpassstrom von bis zu 3.600 A für 380-kV-Stromkreise können in der Netzplanung in erster Näherung sowohl schutztechnische als auch stabilitätsbedingte Aspekte im Grundfall und (n-1)-Ausfall berücksichtigt werden. Davon abweichende Werte im Bereich über 3.600 A bis 4.000 A müssen durch Stabilitätsuntersuchungen und/oder im Rahmen des Netzschutzkonzeptes bestimmt werden.

Der Grundfall und der (n-1)-Ausfall dürfen auf 380-kV-Stromkreisen nicht zur Überschreitung des zulässigen Engpassstroms führen.

b) Erweiterter (n-1)-Ausfall

Für den erweiterten (n-1)-Ausfall gelten die gleichen Grenzwerte wie im (n-1)-Ausfall unter Berücksichtigung angepasster Übertragungsaufgaben gemäß Kapitel 4.2.2.

c) Sammelschienen- und Common-Mode-Ausfall

Mit einem Engpassstrom von bis zu 4.000 A für 380-kV-Stromkreise können in der Netzplanung in erster Näherung sowohl schutztechnische als auch stabilitätsbedingte Aspekte im eingeschränkt zu beherrschenden Sammelschienen- und Common-Mode-Ausfall berücksichtigt werden, da in diesen Fällen eine oder mehrere Anregungen des Netzschutzes infolge von Leistungspendelungen akzeptiert werden, wenn ein sicheres Rückfallen des Schutzes gewährleistet wird.

Bei eingeschränkt zu beherrschenden Sammelschienen- und Common-Mode-Ausfällen darf der Stabilitätsengpassstrom eines 380-kV-Stromkreises keinesfalls überschritten werden, damit die Störungsausweitung regional begrenzt bleibt.

4.7 Verlust von Erzeugung oder Last

Der Ausfall einer Sammelschiene oder eines Sammelschienenabschnitts darf nicht zu einem Erzeugungsoder Lastausfall von mehr als 2.000 MW führen. Dies gilt auch für HGÜ-Verbindungen zwischen Synchrongebieten und für Offshore-Netzanbindungen mittels Drehstrom oder Gleichstrom (HGÜ-Verbindungen als Punkt-zu-Punkt-Verbindungen bzw. Multiterminal-Systeme).

Weitere für die Netzauslegung relevante Ausfälle dürfen nicht zu einem Erzeugungs- oder Lastausfall von mehr als 3.000 MW führen.²⁹

Stand Oktober 2024 Seite 37 von 66

_

²⁹ Gemäß "System Operation Guideline" (guideline on electricity transmission system operation).

4.8 Systemstabilität

4.8.1 Allgemein

Als Systemstabilität wird die Fähigkeit des Übertragungsnetzes bezeichnet, wenn für einen gegebenen initialen stabilen Betriebszustand nach einer Zustandsänderung, z. B. infolge eines Störereignisses, wieder einen Gleichgewichtszustand erlangt werden kann. Dabei müssen sich die netztechnischen Beurteilungskriterien innerhalb zulässiger Grenzen befinden, so dass das gesamte Elektrizitätsversorgungssystem (Gesamtheit von Erzeugern, Netzen und Verbrauchern) stabil und in gewünschten Betriebsgrenzen bleibt.

Die Abbildung 6 zeigt eine Übersicht der Stabilitätsaspekte welche nachfolgend erläutert werden.

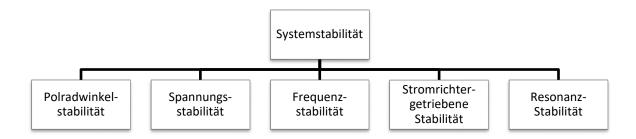


Abbildung 6: Übersicht zu Stabilitätsaspekten[28], [29], [30]

Ein stabiler Synchronbetrieb der Erzeugungsanlagen ist Voraussetzung für einen sicheren und zuverlässigen Verbundbetrieb sowie die Versorgung der Netznutzer. Das dynamische Verhalten eines Elektrizitätsversorgungssystems resultiert aus den physikalischen Wechselwirkungen von Erzeugungsanlagen, dem europäischen, synchron zusammengeschalteten Übertragungsnetz und Netznutzern mit ihren jeweiligen Regeleinrichtungen. Es ist daher erforderlich, dass die Übertragungsnetzbetreiber über genaue Kenntnisse des dynamischen Verhaltens der am Elektrizitätsversorgungsnetz angeschlossenen bzw. anzuschließenden Anlagen verfügen und die Stabilität des Elektrizitätsversorgungssystems fortlaufend analysieren.

Die oben gezeigten Stabilitätsaspekte gewinnen vor dem Hintergrund des Wandels der Erzeugungs- und Laststrukturen, der wachsenden Transportaufgaben sowie der angestrebten Höherbelastung des Übertragungsnetzes zunehmend an Bedeutung für den sicheren und zuverlässigen Betrieb des Übertragungsnetzes.

Insbesondere die Höherbelastung des bestehenden und geplanten Übertragungsnetzes erfordert zusätzliche Anstrengungen und Maßnahmen zur Wahrung eines stabilen Netz- und Systembetriebs.

4.8.2 Polradwinkelstabilität

Die Polradwinkelstabilität beschreibt die Fähigkeit der Synchrongeneratoren am Übertragungsnetz den synchronen Betrieb, im Grundfall sowie nach einer Zustandsänderung (z. B. Störung) aufrechtzuerhalten.

Die zu beherrschenden Zustandsänderungen werden nach dem Zeitbereich und der Größe der Änderung unterschieden. Können schnelle und/oder große Zustandsänderungen (z. B. Störungen) beherrscht werden, so wird dies als transiente Stabilität bezeichnet. Die transiente Stabilität steht zudem im Zusammenhang mit der Kurzzeitspannungsstabilität gemäß Kapitel 4.8.3. Diese Stabilitätsaspekte sind relevant für die Netzauslegung und in Kapitel 4.8.6 erläutert.

Können langsame und/oder kleine Zustandsänderungen beherrscht werden, so wird dies als statische Stabilität bezeichnet. Polrad- bzw. Netzpendelungen im Übertragungsnetz, die z. B. durch Schalthandlungen sowie Schwankungen der Last oder Erzeugung ausgelöst werden können, müssen ausreichend gedämpft sein.

Stand Oktober 2024 Seite 38 von 66

4.8.3 Spannungsstabilität

Die Spannungsstabilität beschreibt, die Fähigkeit des Übertragungsnetzes im Grundfall sowie nach einer Zustandsänderung (z. B. Störung) eine stationäre Spannung an allen Netzknoten aufrechtzuerhalten. Die Spannungsstabilität ist abhängig davon, ob eine ausgeglichene Blindleistungsbilanz aufrechterhalten beziehungsweise wieder hergestellt werden kann.

Die Spannungsstabilität wird nach ihrem Zeitbereich wie folgt unterschieden:

- Kurzzeitspannungsstabilität:
 Dies beschreibt die Fähigkeit des Elektrizitätsversorgungssystem, nach einer schnellen und/oder große Zustandsänderungen (z.B. nach einer Störung) eine stabile stationäre Spannung zu erreichen
- Langzeitspannungsstabilität:
 Dies beschreibt die Fähigkeit des Elektrizitätsversorgungssystem, nach Zustandsänderungen (z. B. nach einer Störung oder nach Leistungsflussänderung) über eine längere Zeitdauer bis in den Minutenbereich hinweg eine stabile stationäre Spannung zu erreichen.

Die Prüfung der Kurzzeitspannungsstabilität kann durch eine Bewertung der Zeitdauer der Spannungswiederkehr bzw. Spannungserholung nach Fehlerklärung anhand der Ergebnisse durchgeführter Effektivwert-Simulationen zur transienten Stabilität erfolgen.

Eine erhöhte Zeitdauer der Spannungswiederkehr bzw. Spannungserholung kann zu ungewollten Schutzanregungen und Folgeauslösungen sowie zum Verlust der Polradwinkelstabilität führen. Vorrangig wird dem durch netzdienliches Verhalten der Erzeugungsanlagen entgegengewirkt. Zusätzlich können auch spannungsstützende Betriebsmittel im Übertragungsnetz eingesetzt werden; dafür sind dynamische, spannungsstabilisierende Blindleistungskompensationsanlagen geeignet.

Die Langzeitspannungsstabilität wird im Rahmen der Netzauslegung durch Prüfung der Spannungsgrenzen im Grundfall sowie nach einer Zustandsänderung (gemäß Kapitel 4.5) sichergestellt.

4.8.4 Frequenzstabilität

Die Frequenzstabilität beschreibt, die Fähigkeit des Elektrizitätsversorgungssystems (Gesamtheit von Erzeugern, Netzen und Verbrauchern) eine stationäre Netzfrequenz auch nach einer schweren Störung des Wirkleistungsgleichgewichts zu erreichen. Sie ist von der Fähigkeit des Übertragungssystems abhängig, das Gleichgewicht zwischen Erzeugung und Verbrauch beizubehalten beziehungsweise wieder herzustellen.

Um Netztrennungen der Erzeugungsanlagen vom Elektrizitätsversorgungsnetz zu vermeiden, muss die Frequenz innerhalb der gültigen Frequenzgrenzen gehalten werden.

Für die Beherrschung von Netzauftrennungen sind folgende Faktoren entscheidend:

- ausreichend Momentanreserve,
- ein zuverlässig funktionierender Systemschutzplan,
- ausreichende Robustheit von Erzeugern und Verbrauchern gegenüber lokal auftretenden Frequenzgradienten.

Stand Oktober 2024 Seite 39 von 66

Die Momentanreserve ist eine Eigenschaft des Elektrizitätsversorgungssystems, die im Wesentlichen von der Schwungmasse rotierender Synchronmaschinen bereitgestellt wird. Die Trägheit der Schwungmasse verhindert, dass eine Wirkleistungsänderung nach einer Störung des Gleichgewichts zwischen Erzeugung und Verbrauch innerhalb des Elektrizitätsversorgungssystems unmittelbar zu einer Frequenzänderung führt. Die Momentanreserve reagiert unverzögert auf kurzzeitige Winkeländerungen innerhalb des Magnetfeldes der Synchronmaschinen, wirkt dem Wirkleistungsungleichgewicht entgegen und begrenzt den Frequenzgradienten. Dieses Verhalten wirkt im Elektrizitätsversorgungssystem systemstabilisierend.

Neben der Schwungmasse kann die Momentanreserve auch durch regelungstechnische Betriebsmittel wie z. B. Umrichteranlagen mit Wirkleistungsspeichern bereitgestellt werden. Damit diese regelungstechnisch umgesetzte Reaktion auf eine Störung im Elektrizitätsversorgungssystem äquivalent mit dem Verhalten einer rotierenden Synchronmaschine ist, muss diese unverzögert erfolgen.

4.8.5 Stromrichter-getriebene Stabilität und Resonanzstabilität

Die stromrichter-getriebene Stabilität beschreibt, die Fähigkeit des Übertragungsnetzes im Grundfall sowie nach einer Zustandsänderung (z. B. Störung) den Betrieb stromrichterbasierter Anlagen an ihren Anschlusspunkten zu ermöglichen, ohne dass unerwünschte Wechselwirkungen zwischen Stromrichterregelungen oder zwischen Stromrichterregelungen mit anderer Netzbetriebsmittel auftreten.

Die stromrichter-getriebene Stabilität umfasst langsame und schnelle Interaktionen im Frequenzbereich von wenigen Hertz bis in den Kilo-HertzBereich.

Resonanzstabilität ist die Fähigkeit des Übertragungsnetzes, unzulässige elektrische oder elektromechanische Schwingungen mit Beteiligung von Generatoren zu vermeiden, die durch Wechselwirkungen bspw. zwischen dem Wellenstrang und dem Elektrizitätsversorgungsnetz verursacht werden können.

Die Resonanzstabilität umfasst die elektrischen und mechanischen³⁰ Resonanzphänomene.

Da die stromrichter-getriebene Stabilität und die Resonanzstabilität teilweise schwer differenzierbare Stabilitätsphänomene beinhalten, ist derzeit keine klare Abgrenzung zwischen diesen Stabilitätsaspekten bei der Netz- bzw. Systemauslegung sinnvoll.

4.8.6 Stabilitätsaspekte in der Netzauslegung

4.8.6.1 Einleitung

In der Systemauslegung sind alle vorgenannten Stabilitätsaspekte umfassend zu untersuchen. Gemäß der Abgrenzung zwischen Netz- und Systemauslegung (siehe Abbildung 1) werden in den vorliegenden Planungsgrundsätzen vorrangig die nachfolgenden Stabilitätskriterien geprüft. Hierbei werden robuste Ansätze genutzt, um aufwändig Berechnungsverfahren zu vermeiden.

4.8.6.2 Transiente Stabilität von Erzeugungsanlagen

Netzseitig hinreichende Voraussetzungen für den stabilen Betrieb von Erzeugungsanlagen bestehen, wenn die ausgehend vom topologischen Grundfall am Netzanschlusspunkt netzseitig anstehende Anfangs-Kurzschlusswechselstromleistung (S"kN) nach Fehlerklärung größer ist als der 6-fache Zahlenwert der Summe der Nennwirkleistungen aller am Netzanschlusspunkt dieser Erzeugungsanlage galvanisch verbundenen Erzeugungsanlagen und die Fehlerklärungszeit für 3-polige Netzkurzschlüsse im Nahbereich der Erzeugungsanlage maximal 150 ms beträgt.

Stand Oktober 2024 Seite 40 von 66

-

³⁰ Beispielsweise Torsionseffekte am Generatorwellenstrang.

Wird unter den vorgenannten Bedingungen der Mindestwert der Anfangs-Kurzschlusswechselstromleistung nicht eingehalten, ist die transiente Stabilität von Erzeugungsanlagen bei Kurzschlüssen im Netz einschließlich der maximal zulässigen Fehlerklärungszeit durch dynamische Stabilitätsuntersuchungen zu überprüfen.

Nach konzeptgemäßer Klärung des 3-poligen Kurzschlusses mit (n-1)-Ausfall des Betriebsmittels, das den höchsten Beitrag zur netzseitigen Kurzschlussleistung liefert, müssen die netzseitigen Voraussetzungen gegeben sein, dass Erzeugungsanlagen in ihrem gesamten Betriebsbereich die Verbindung mit dem Netz und den stabilen Betrieb aufrechterhalten können.

4.8.6.3 Statische Stabilität von Erzeugungsanlagen

Netzseitig hinreichende Voraussetzungen für den stabilen Betrieb von Erzeugungsanlagen bestehen, wenn die im topologischen Grundfall oberspannungsseitig anstehende Anfangs-Kurzschlusswechselstromleistung (S"_{kN}) mindestens dem 4-fachen Zahlenwert der Summe der Nennwirkleistungen aller am Netzanschlusspunkt dieser Erzeugungsanlage galvanisch verbundenen Erzeugungsanlagen bei einer oberspannungsseitig anstehenden Spannung von mindestens der Nennspannung des Netzes entspricht.

Wird unter den vorgenannten Bedingungen der Mindestwert der Anfangs-Kurzschlusswechselstromleistung nicht eingehalten, ist die statische Stabilität von Erzeugungsanlagen bei Kurzschlüssen im Netz durch dynamische Stabilitätsuntersuchungen zu überprüfen.

Bei Polrad- bzw. Netzpendelungen im Übertragungsnetz, die z. B. durch Schalthandlungen ausgelöst werden können, müssen die netzseitigen Voraussetzungen gegeben sein, dass Erzeugungsanlagen in ihrem gesamten Betriebsbereich die Verbindung mit dem Netz und den stabilen Betrieb aufrechterhalten können.

4.8.6.4 Transiente Stabilität von Netzbereichen

Bei einer elektrisch schwachen Kopplung von Netzbereichen bzw. sehr hoch belasteten Übertragungsleitungen besteht grundsätzlich die Gefahr der Netzauftrennung, die sowohl einzelne Erzeugungsanlagen als auch räumlich verteilte Erzeugungsanlagen in größeren Netzbereichen betreffen kann. Bei Verlust des Synchronismus zwischen Netzbereichen besteht das Risiko eines völligen Netzzusammenbruchs: Die nicht mehr synchron zueinander laufenden Spannungszeiger führen zu sehr niedrigen Spannungen im Übertragungsnetz und somit zur Gefahr eines überregionalen Spannungskollapses, kaskadierenden Ausfällen von Erzeugungsanlagen und nicht vorhersehbaren Systemauftrennungen durch Schutzauslösungen.

Zur Bewertung der transienten Stabilität von Netzbereichen werden dreipolige Kurzschlüsse, die hinsichtlich der transienten Stabilität die schwerwiegendste Beanspruchung des Übertragungsnetzes bzw. Verbundsystems darstellen, an ausgewählten Netzknoten simuliert und analysiert.

Bei konzeptgemäß geklärten Fehlern wird eine Fehlerklärungszeit von maximal 150 ms unterstellt. Bei nicht konzeptgemäß geklärten Fehlern (z. B. aufgrund Schalterversagen) kann die Fehlerklärungszeit des Reserveschutzes im Regelfall bis zu 400 ms betragen.

Fehlerklärungen im Rahmen der Netz- und Systemauslegung dürfen nicht zu einem Verlust des Synchronismus zwischen Netzbereichen, d. h. einer Netzauftrennung, führen.

Stand Oktober 2024 Seite 41 von 66

4.9 Kurzschluss

Kurzschlussstromberechnungen werden in Abhängigkeit von Erfordernis und Zielstellung der Untersuchung für die

- Auslegung von Betriebsmitteln und Anlagen,
- Prüfung der Anregebedingungen von Schutzeinrichtungen,
- Bewertung der Stabilität,
- Erdungsbedingungen,
- Beeinflussungsfragen und
- Spannungsqualität (Netzrückwirkungen)

mit den Berechnungsverfahren, die auf der Anwendung der DIN EN 60909-0 (VDE 0102) [31], der DIN EN 60865-1 (VDE 0103) [33] und der TAR Höchstspannung [4] aufbauen, durchgeführt.

Ergänzende Untersuchungen, wie z. B.

- zu Beeinflussungsfragen (DIN VDE 0228-3 [32]) oder
- die Ermittlung der Schritt- und Berührungsspannungen (DIN EN 61936-1 (VDE 0101)[34] bzw.
 DIN EN 50341-1 (VDE 0210-1) [16]) bei Fehlern mit Erdberührung (Netze mit niederohmiger Sternpunkterdung),

sind in Abhängigkeit der Aufgabenstellung durchzuführen.

Für die Beurteilung des Kurzschlussstromverlaufs auf Netzanschlussleitungen von Erzeugungsanlagen werden im Bedarfsfall Momentanwert-Simulationen im Zeitbereich durchgeführt. Ziel ist die notwendige Überprüfung auf fehlende Nulldurchgänge im Kurzschlussstromverlauf, die zu einer besonders starken Beanspruchung von Leistungsschaltern in der HöS-seitigen Netzanschlussanlage führen.

Kurzschlussstromberechnungen im DC-Netz (HGÜ-Verbindungen bzw. ihre HGÜ-Konverterstationen) sind in Abhängigkeit von Erfordernis und Zielstellung der Untersuchung durchzuführen.

Der Auslegungswert von Betriebsmitteln und Anlagen für den Anfangs-Kurzschlusswechselstrom darf nicht überschritten werden (maximale Kurzschlussstrombeanspruchung kleiner Kurzschlussstromauslegung).

Der mit einem Netznutzer vereinbarte Minimalwert der an der Übergabestelle netzseitig anstehenden Kurzschlussleistung darf nicht unterschritten werden (u. a. Grundlage für die Beurteilung der Netzrückwirkungen durch den Verteilungsnetzbetreiber in den Netzen ≤ 110 kV).

Für die erforderliche Kurzschlussstromberechnung zur Ermittlung des minimalen Anfangs-Kurzschlusswechselstroms an einem Netzanschlusspunkt mit Erzeugungsanlagen ist im Rahmen der Abschätzung der transienten Stabilität von Erzeugungsanlagen gemäß Kapitel 4.8.1 wie folgt zu verfahren:

- 1. Einsatz der Erzeugungsanlagen entsprechend den Kriterien für die Ermittlung des minimalen Anfangs-Kurzschlusswechselstroms (Kapitel 3.9, Ziffer 3).
- Nichtberücksichtigung aller am betreffenden Netzanschlusspunkt galvanisch verbundenen Erzeugungsanlagen zur Abbildung des Kriteriums "netzseitig anstehende Anfangs-Kurzschlusswechselstromleistung".
- Netztopologie nach konzeptgemäßer Klärung eines 3-poligen Kurzschlusses desjenigen Betriebsmittels, welches netzseitig den kurzschlussstärksten Beitrag für den betreffenden Netzanschlusspunkt liefert.

Stand Oktober 2024 Seite 42 von 66

Während im stationären Betriebszustand von HGÜ-Konverterstationen der Strom auf der DC-Seite auf den Nennstrom limitiert wird (vgl. Kapitel 4.4.2 a), kann in Abhängigkeit der technologischen Ausgestaltung einer HGÜ-Verbindung bzw. ihrer HGÜ-Konverterstationen im Kurzschlussfall ein Vielfaches des Nennstromes auf der DC-Seite auftreten.

4.10 Spannungsqualität

Spezielle Fragestellungen, beispielsweise zur Spannungsqualität oder zu Oberschwingungen, werden in speziellen Grundsätzen bzw. Richtlinien vertiefend beschrieben. Die Beurteilung der Spannungsqualität orientiert sich an den Anforderungen der TAR Höchstspannung [4], TAR Hochspannung [35] sowie TAR HGÜ [26].

4.11 Sternpunkterdung

Zum Schutz der Betriebsmittel ist in Netzen mit niederohmiger Sternpunkterdung die Einhaltung des Erdfehlerfaktors $\delta \le 1,4$ auch bei netzplanerisch berücksichtigten betriebsbedingten Freischaltungen sicherzustellen.

Die Erdungsverhältnisse der Transformatorsternpunkte im Übertragungsnetz beeinflussen die Höhe der Kurzschlussströme bei einpoligen Fehlern. Bei der Festlegung der Erdungsverhältnisse von Transformatorsternpunkten muss deshalb berücksichtigt werden, dass die einpoligen Kurzschlussströme die Bemessungsströme der Anlagen nicht überschreiten dürfen, d. h., u. a. die Stromtragfähigkeit der Erdungsanlagen und die Wirksamkeit von Schutzeinrichtungen (Anregebedingungen) gewährleistet ist.

4.12 Schutzkonzepte

Im Übertragungsnetz werden grundsätzlich für Stromkreise zwei unabhängige Schutzeinrichtungen vorgesehen. So soll z. B. im 380-kV-Netz ein Leitungsfehler konzeptgemäß und selektiv in maximal 150 ms und bei Schalter- oder Schutzversagen durch den Reserveschutz in einer Fehlerklärungszeit im Regelfall von maximal 400 ms abgeschaltet werden.

4.13 Versorgungszuverlässigkeit

Über die Betrachtung der Netzschwächungen gemäß Kapitel 3.5 hinaus erfolgen im Bedarfsfall weitergehende Betrachtungen zur Versorgungszuverlässigkeit für Anschlüsse von Netznutzern (z. B. Bewertung (n-1)-sicherer bzw. vertraglich vereinbarter Anschluss- und Netzkonzepte für Verteilungsnetze bzw. industrielle Netznutzer).³¹

https://www.vde.com/de/fnn/arbeitsgebiete/versorgungsqualitaet/versorgungszuverlaessigkeit

Stand Oktober 2024 Seite 43 von 66

_

³¹ Im Rahmen der vorliegenden Planungsgrundsätze erfolgt im Regelfall keine Ermittlung und Bewertung der sog. DISQUAL-Kenngrößen gemäß Anleitung zur FNN-Störungs- und Verfügbarkeitsstatistik (Unterbrechungshäufigkeit, Unterbrechungsdauer Unterbrechungswahrscheinlichkeit bzw. Nichtverfügbarkeit).

5 Maßnahmen zur Einhaltung der Beurteilungskriterien

Bei signifikanter Nichteinhaltung der Beurteilungskriterien nach Kapitel 4 kommen planerisch netzbezogene Maßnahmen für ein bedarfsgerechtes und nachhaltiges Netzkonzept zur Anwendung. Von einer signifikanten Nichteinhaltung ist auszugehen, wenn ein oder mehrere Beurteilungskriterien in den betrachteten Netznutzungsfällen wiederholt (Häufigkeit der Verletzung) und/oder deutlich (Höhe der Verletzung) verletzt werden. Die Einhaltung der Beurteilungskriterien ist unter Beachtung einer technisch und wirtschaftlich optimierten Reihenfolge sowie des sog. NOVA-Prinzips (Netz-Optimierung vor Netz-Verstärkung vor Netz-Ausbau)³² sicherzustellen (vgl. Anlage 1):

1. Netzoptimierung

- Topologiemaßnahmen gemäß Kapitel 3.4,
- Wirkleistungsflusssteuerung mit vorhandenen Betriebsmitteln (z. B. Querregeltransformatoren, HGÜ-Verbindungen, FACTS),
- Einsatz vorhandener Blindleistungskompensationsanlagen,
- Spannungsumstellung von aktuell mit 220 kV betriebenen Anlagen, die für 380 kV bemessen wurden (z. B. Blindleistungskompensationsanlagen, Transformatoren),
- Spannungsupgrade von Freileitungen (z. B. durch Spannungsumstellung von aktuell mit 220 kV betriebenen Stromkreisen von Freileitungen, die als 380-kV-Freileitungen errichtet wurden),
- Witterungsabhängiger Freileitungsbetrieb,

2. Netzverstärkung

- Austausch von Betriebsmitteln (Kurzschlussfestigkeit und Leistungsgröße),
- Ertüchtigung von Schaltanlagen (Kurzschlussfestigkeit und Stromtragfähigkeit),
- Erweiterung von Umspannwerken und Schaltanlagen (z. B. um zusätzliche Schaltfelder und/oder Sammelschienen),
- Zubeseilung/Auflage von Stromkreisen auf freien, aktuell nicht genutzten Gestängeplätzen von Freileitungen,
- Ertüchtigung von Freileitungen zur Erhöhung des thermischen Engpassstroms (Auswechseln der Beseilung³³, Erhöhung der Bodenabstände),
- Neubau von Freileitungen in Bestandstrassen von 380-kV- und/oder 220-kV-Freileitungen,

3. Netzausbau

- Neubau von Schaltanlagen,
- Zubau von Blindleistungskompensationsanlagen (z. B. Kompensationsspulen, Kondensatoren, rotierende Phasenschieber, SVC und STATCOM),
- Zubau von Transformatorenleistung,
- Zubau von wirkleistungsflusssteuernden Betriebsmitteln (z. B. Querregeltransformatoren,
- FACTS),
- Neubau von Drehstrom-Leitungen bzw. HGÜ-Verbindungen inkl. -Konverterstationen.

Bei der Ermittlung der technisch-wirtschaftlichen Reihenfolge von Netzmaßnahmen nach dem NOVA-Prinzip muss die Bedarfsgerechtigkeit an erster Stelle stehen, zugleich aber auch die Nachhaltigkeit der gewählten Netzmaßnahmen geprüft werden.

Stand Oktober 2024 Seite 44 von 66

³² Ziel des NOVA-Prinzips ist es u. a., die zusätzliche Inanspruchnahme von Trassenraum auf das unbedingt notwendige Maß zu beschränken, indem zuerst die Bestandsleitungen optimiert eingesetzt bzw. vorhandene Trassenräume besser ausgenutzt werden.

³³ Beispielsweise bei statischer Eignung und rechtlicher Genehmigungsfähigkeit durch Wechsel auf Hochstrombeseilung ("klassische" Aluminium-/Stahl-Beseilung mit einer zulässigen Leiterseilendtemperatur von 80 °C, aber mit größerem Querschnitt) oder durch Einsatz von HTL-Beseilung (Hochtemperaturleiterseile) bzw. HTLS-Beseilung (Hochtemperaturleiterseile mit geringem Durchhang) mit zulässigen Leiterseilendtemperaturen bis 210 °C.

So kann zwar z. B. die Erhöhung des Engpassstroms einer Bestandsleitung (Auswechseln der Beseilung) als Netzverstärkung für den betrachteten Planungszeitraum bedarfsgerecht, aber durch absehbar weiter ansteigenden Übertragungsbedarf nicht nachhaltig sein. Ein zusätzlicher Leitungsbau in neuer Trasse, unter Beachtung dafür notwendiger Genehmigungszeiträume und möglicher Akzeptanzprobleme, könnte in diesem Fall den mittel- bis langfristig nachhaltigen und technisch-wirtschaftlich vorteilhaften Lösungsansatz darstellen, der zudem Vorteile hinsichtlich Verbesserung der Netzsicherheit und Systemstabilität bieten kann.

Marktbezogene Maßnahmen, wie Redispatch von konventionellen Erzeugungsanlagen, Einspeisemanagement von EE-Anlagen oder Lastabschaltungen, sind – sofern im ausreichenden Maße verfügbar – kurzfristig wirkende präventive bzw. kurative Maßnahmen der Netzbetriebsplanung bzw. des Netzbetriebs zur Einhaltung und Wiederherstellung der Netzsicherheit. Sie werden nur bei der Prüfung des erweiterten (n-1)-Kriteriums zur Netzauslegung für ein weitgehend engpassfreies Netz, welches die Grundlage für ein möglichst freizügiges künftiges Marktgeschehen ist, berücksichtigt.

Stand Oktober 2024 Seite 45 von 66

6 Begriffe

Ausfall bzw. (n-1)-Ausfall Im Rahmen dieser Planungsgrundsätze wird darunter, ausgehend vom pologischen Grundfall bzw. Normalschaltzustand, der zufällige störungsbedingte Ausfall bzw. Übergang eines Netzbetriebsmittel oder einer Erze gungsanlage in den Fehlzustand verstanden. DKE-IEV-Nr: 192-03-01: Der Ausfall einer Einheit ist das Ergebnis das zu einem Fehlzustand dies Einheit führt. DKE-IEV-Nr: 192-04-01: Der Fehlzustand einer Einheit resultiert aus einem Ausfall, [] dieser Einh selbst []. DKE-IEV Nr. 826-16-01: Produkt, das zum Zweck der Erzeugung, Umwandlung, Übertragung, Viteilung und Anwendung der elektrischen Energie benutzt wird, zum Beisp Maschinen, Transformatoren, Schaltgeräte und Steuergeräte, Messgerä Schutzeinrichtungen, Kabel, Freileitungen, elektrische Verbrauchsmittel. Common-Mode- Ausfall bzw. Bezeichnet das gleichzeitige Austreten mehrerer Ausfälle mit gleicher Ursten der Steuergenäte und Steuergeräte.	
Einheit führt. DKE-IEV-Nr: 192-04-01: Der Fehlzustand einer Einheit resultiert aus einem Ausfall, [] dieser Einh selbst []. Betriebsmittel (elektrisches) DKE-IEV Nr. 826-16-01: Produkt, das zum Zweck der Erzeugung, Umwandlung, Übertragung, Verteilung und Anwendung der elektrischen Energie benutzt wird, zum Beisp Maschinen, Transformatoren, Schaltgeräte und Steuergeräte, Messgerä Schutzeinrichtungen, Kabel, Freileitungen, elektrische Verbrauchsmittel. Common-Mode-Ausfall bzw. Bezeichnet das gleichzeitige Austreten mehrerer Ausfälle mit gleicher Ursteileitungen.	e-
Der Fehlzustand einer Einheit resultiert aus einem Ausfall, [] dieser Einh selbst []. Betriebsmittel (elektrisches) DKE-IEV Nr. 826-16-01: Produkt, das zum Zweck der Erzeugung, Umwandlung, Übertragung, Verteilung und Anwendung der elektrischen Energie benutzt wird, zum Beisp Maschinen, Transformatoren, Schaltgeräte und Steuergeräte, Messgerä Schutzeinrichtungen, Kabel, Freileitungen, elektrische Verbrauchsmittel. Common-Mode-Ausfall bzw. Bezeichnet das gleichzeitige Austreten mehrerer Ausfälle mit gleicher Ursteilen.	er
Selbst []. Betriebsmittel (elektrisches) DKE-IEV Nr. 826-16-01: Produkt, das zum Zweck der Erzeugung, Umwandlung, Übertragung, Verteilung und Anwendung der elektrischen Energie benutzt wird, zum Beisp Maschinen, Transformatoren, Schaltgeräte und Steuergeräte, Messgerä Schutzeinrichtungen, Kabel, Freileitungen, elektrische Verbrauchsmittel. Common-Mode-Ausfall bzw. Bezeichnet das gleichzeitige Austreten mehrerer Ausfälle mit gleicher Urs	
(elektrisches) Produkt, das zum Zweck der Erzeugung, Umwandlung, Übertragung, Volteilung und Anwendung der elektrischen Energie benutzt wird, zum Beisp Maschinen, Transformatoren, Schaltgeräte und Steuergeräte, Messgerä Schutzeinrichtungen, Kabel, Freileitungen, elektrische Verbrauchsmittel. Common-Mode-Ausfall bzw. Bezeichnet das gleichzeitige Austreten mehrerer Ausfälle mit gleicher Urs	e <i>it</i>
teilung und Anwendung der elektrischen Energie benutzt wird, zum Beisp Maschinen, Transformatoren, Schaltgeräte und Steuergeräte, Messgerä Schutzeinrichtungen, Kabel, Freileitungen, elektrische Verbrauchsmittel. Common-Mode- Ausfall bzw. Bezeichnet das gleichzeitige Austreten mehrerer Ausfälle mit gleicher Urs	
Ausfall bzw. Bezeichnet das gleichzeitige Austreten mehrerer Ausfälle mit gleicher Urs	iel
Bezoldinia dad giolofizatigo / dadi atom memoria / dadidato mit giolofia of	
außergewöhnlichen che.	a-
Ausfallvariante (exceptional contingency) Dies beinhaltet den zeitgleichen Ausfall mehrerer Komponenten (Netzb. triebsmittel und/oder Erzeugungsanlagen) auf Grund derselben Ursach sofern es sich bei keiner der betroffenen Komponenten um einen determierten Folgeausfall handelt.	e,
Erzeugungsanlage VDE AR-N 4130, 3.1.17:	
Anlage, in der sich ein oder mehrere Erzeugungseinheiten elektrischer Engie und alle zum Betrieb erforderlichen elektrischen Einrichtungen befinde	
Hinweis: Dabei wird nach TAR Höchstspannung zwischen Typ 1 (Direktg koppelte Synchrongeneratoren) und Typ 2 (alle anderen) unterschieden.	e-
Fehlerklärung VDE AR-N 4130, 3.1.21:	
Vorgang der dazu führt, dass in einer elektrischen Anlage durch eine Felerstelle kein Strom mehr fließt, d. h. der Fehler ist geklärt, sobald der letz Leistungsschalter, der den Fehlerort begrenzt, ausgeschaltet und den (Feler-) Strom unterbrochen hat.	te
Fehlerklärungszeit VDE AR-N 4130, 3.1.22:	
bzw. Fehlerklärungs- Zeit zwischen dem Beginn des Netzfehlers und der Fehlerklärung.	
dauer DKE-IEV Nr. 614-02-26:	
Dauer zwischen dem Beginn des Netzfehlers und dem Abschluss of Fehlerbeseitigung. Die Fehlerklärungsdauer ist die längste Kurzschlussstrom-Ausschaltdau des/der zugeordneten Leistungsschalter(s) für die Beseitigung des Fehle stroms an dem fehlerbehafteten Betriebsmittel.	er
Grenzwertverletzung Diese liegt dann vor, wenn ein als zulässig definierter Wertebereich dur die beobachtete elektrische Größe verlassen wird.	ch

Stand Oktober 2024 Seite 46 von 66

Bezeichnet im Rahmen dieser Planungsgrundsätze den netztopologischen Ausgangszustand, in dem alle Betriebsmittel verfügbar sind (sog. topologischer Grundfall bzw. Normalschaltzustand, auch als (n-0)-Fall bzw. ungestörter Netzzustand bezeichnet). In der Netzplanung ist er das zu analysierende Ausgangszesenario und zugleich Basis zur Simulation von Feherfallen, insbesondere des (n-1)-Ausfalls und weiterführender Analysen zur Netz- und Systemsicherheit. Hinweis: In der Netzbetriebsplanung und im Netzbetrieb wird darunter der reale Netzzustand mit den verfügbaren und eingesetzten Betriebsmitteln verstanden. Interkonnektor bzw. Verordnung (EG) Nr. 714/2009, Art. 2, Abs. 1: Bezeichnet eine Übertragungsleitung, die eine Grenze zwischen Mitgliedstaaten überquert oder überspannt und die nationalen Übertragungsnetze der Mitgliedstaaten verbindet. Kraftwerk Kraftwerk		
Bezeichnet eine Übertragungsleitung, die eine Grenze zwischen Mitgliedstaaten überquert oder überspannt und die nationalen Übertragungsnetze der Mitgliedstaaten verbindet. Kraftwerk	Grundfall	Ausgangszustand, in dem alle Betriebsmittel verfügbar sind (sog. topologischer Grundfall bzw. Normalschaltzustand, auch als (n-0)-Fall bzw. ungestörter Netzzustand bezeichnet). In der Netzplanung ist er das zu analysierende Ausgangsszenario und zugleich Basis zur Simulation von Fehlerfällen, insbesondere des (n-1)-Ausfalls und weiterführender Analysen zur Netz- und Systemsicherheit. Hinweis: In der Netzbetriebsplanung und im Netzbetrieb wird darunter der reale Netzzustand mit den verfügbaren und eingesetzten Betriebsmitteln
Bezeichnet eine Übertragungsleitung, die eine Grenze zwischen Mitgliedstaaten überquert oder überspannt und die nationalen Übertragungsnetze der Mitgliedstaaten verbindet. Kraftwerk	Interkonnektor bzw	Verordnung (EG) Nr. 714/2009, Art. 2, Abs. 1:
Zur Erzeugung elektrischer Energie bestimmte Anlage [], der Energieumwandlung. Ein Kraftwerk kann aus einer oder mehreren Erzeugungseinheit(en) bzw. Erzeugungsanlage(n) bestehen. Kuppelleitung Ein Stromkreis, der die Übertragungsnetze von deutschen ÜNB verbindet. Kurzschluss Kurzschluss Kurzschluss DIN EN 60909-0 (VDE 0102), 3.1: [] leitfähige Verbindung zwischen zwei oder mehr leitfähigen Teilen, durch die die elektrischen Potenzialdifferenzen zwischen diesen leitfähigen Teilen zu Null oder nahezu Null erzwungen werden. Kurzschlussstrom DIN EN 60909-0 (VDE 0102), 3.2: Überstrom, hervorgerufen durch einen Kurzschluss in einem eletrischen Netz. Anmerkung: Es ist notwendig, zwischen dem Kurzschluss an der Kurzschlussstelle und den Teilkurzschlussströmen an irgendeinem Punkt des Netzes zu unterscheiden. DIN EN 60909-0 (VDE 0102), 3.5: Effektivwert des Wechselstromanteils eines zu erwartenden Kurzschlussstromes im Augenblick des Kurzschlusseintritts, wenn die Impedanz zum Zeitpunkt Null beibehält. Anfangs-Kurzschlusswechselstromanteils eines Zu erwartenden Kurzschlussstromes im Augenblick des Kurzschlusseintritts, wenn die Impedanz zum Zeitpunkt Null beibehält. DIN EN 60909-0 (VDE 0102), 3.6: Fiktive Größe berechnet aus dem Produkt [] √3 * Netznennspannung * Anfangs-Kurzschlussin Hoch- und Höchstspannungsnetzen als Rechengröße verwendet. Sie ist von der Transformatorübersetzung unabhängig und darf nicht mit der in einem Lichtbogen an der Kurzschlussstelle umgesetzten Leistung verwechselt werden. Last DKE-IEV Nr. 151-15-15: Einrichtung, die zur Aufnahme von Leistung aus [] einem Elektrizitätsver-		Bezeichnet eine Übertragungsleitung, die eine Grenze zwischen Mitglied- staaten überquert oder überspannt und die nationalen Übertragungsnetze
Zur Erzeugung elektrischer Energie bestimmte Anlage [], der Energieumwandlung. Ein Kraftwerk kann aus einer oder mehreren Erzeugungseinheit(en) bzw. Erzeugungsanlage(n) bestehen. Kuppelleitung Ein Stromkreis, der die Übertragungsnetze von deutschen ÜNB verbindet. Kurzschluss Kurzschluss Kurzschluss DIN EN 60909-0 (VDE 0102), 3.1: [] leitfähige Verbindung zwischen zwei oder mehr leitfähigen Teilen, durch die die elektrischen Potenzialdifferenzen zwischen diesen leitfähigen Teilen zu Null oder nahezu Null erzwungen werden. Kurzschlussstrom DIN EN 60909-0 (VDE 0102), 3.2: Überstrom, hervorgerufen durch einen Kurzschluss in einem eletrischen Netz. Anmerkung: Es ist notwendig, zwischen dem Kurzschluss an der Kurzschlussselle und den Teilkurzschlussströmen an irgendeinem Punkt des Netzes zu unterscheiden. DIN EN 60909-0 (VDE 0102), 3.5: Effektivwert des Wechselstromanteils eines zu erwartenden Kurzschlussstromes im Augenblick des Kurzschlusseintritts, wenn die Impedanz zum Zeitpunkt Null beibehält. DIN EN 60909-0 (VDE 0102), 3.6: Fiktive Größe berechnet aus dem Produkt [] √3 * Netznennspannung * Anfangs-Kurzschlusswechselstrom. Die Größe wird bei dreipoligem Kurzschluss in Hoch- und Höchstspannungsnetzen als Rechengröße verwendet. Sie ist von der Transformatorübersetzung unabhängig und darf nicht mit der in einem Lichtbogen an der Kurzschlussstelle umgesetzten Leistung verwechselt werden. Last DKE-IEV Nr. 151-15-15: Einrichtung, die zur Aufnahme von Leistung aus [] einem Elektrizitätsver-	Kraftwerk	DKE-IEV Nr. 601-03-01:
Erzeugungsanlage(n) bestehen. Kuppelleitung Ein Stromkreis, der die Übertragungsnetze von deutschen ÜNB verbindet.		Zur Erzeugung elektrischer Energie bestimmte Anlage [], der Energieumwandlung.
Kurzschluss		Erzeugungsanlage(n) bestehen.
Kurzschluss DIN EN 60909-0 (VDE 0102), 3.1: [] leitfähige Verbindung zwischen zwei oder mehr leitfähigen Teilen, durch die die elektrischen Potenzialdifferenzen zwischen diesen leitfähigen Teilen zu Null oder nahezu Null erzwungen werden. Kurzschlussstrom DIN EN 60909-0 (VDE 0102), 3.2: Überstrom, hervorgerufen durch einen Kurzschluss in einem eletrischen Netz. Anmerkung: Es ist notwendig, zwischen dem Kurzschluss an der Kurzschlussstelle und den Teilkurzschlussströmen an irgendeinem Punkt des Netzes zu unterscheiden. DIN EN 60909-0 (VDE 0102), 3.5: Effektivwert des Wechselstromanteils eines zu erwartenden Kurzschlussstromes im Augenblick des Kurzschlusseintritts, wenn die Impedanz zum Zeitpunkt Null beibehält. Anfangs-Kurzschlusswechselstrom. DIN EN 60909-0 (VDE 0102), 3.6: Fiktive Größe berechnet aus dem Produkt [] √3 * Netznennspannung * Anfangs-Kurzschlusswechselstrom. Die Größe wird bei dreipoligem Kurzschluss in Hoch- und Höchstspannungsnetzen als Rechengröße verwendet. Sie ist von der Transformatorübersetzung unabhängig und darf nicht mit der in einem Lichtbogen an der Kurzschlussstelle umgesetzten Leistung verwechselt werden. Last DKE-IEV Nr. 151-15-15: Einrichtung, die zur Aufnahme von Leistung aus [] einem Elektrizitätsver-	Kuppelleitung	Ein Stromkreis, der die Übertragungsnetze von deutschen ÜNB verbindet.
[] leitfähige Verbindung zwischen zwei oder mehr leitfähigen Teilen, durch die die elektrischen Potenzialdifferenzen zwischen diesen leitfähigen Teilen zu Null oder nahezu Null erzwungen werden. Kurzschlussstrom DIN EN 60909-0 (VDE 0102), 3.2: Überstrom, hervorgerufen durch einen Kurzschluss in einem eletrischen Netz. Anmerkung: Es ist notwendig, zwischen dem Kurzschluss an der Kurzschlussstelle und den Teilkurzschlussströmen an irgendeinem Punkt des Netzes zu unterscheiden. DIN EN 60909-0 (VDE 0102), 3.5: Effektivwert des Wechselstromanteils eines zu erwartenden Kurzschlussstromes im Augenblick des Kurzschlusseintritts, wenn die Impedanz zum Zeitpunkt Null beibehält. Anfangs-Kurzschlusswechselstromanteils eines zu erwartenden Kurzschlusstromes im Augenblick des Kurzschlusseintritts, wenn die Impedanz zum Zeitpunkt Null beibehält. DIN EN 60909-0 (VDE 0102), 3.6: Fiktive Größe berechnet aus dem Produkt [] 3 * Netznennspannung * Anfangs-Kurzschlusswechselstrom. Die Größe wird bei dreipoligem Kurzschlusswechselstrom. Die Größe wird bei dreipoligem Kurzschluss in Hoch- und Höchstspannungsnetzen als Rechengröße verwendet. Sie ist von der Transformatorübersetzung unabhängig und darf nicht mit der in einem Lichtbogen an der Kurzschlussstelle umgesetzten Leistung verwechselt werden. Last DKE-IEV Nr. 151-15-15: Einrichtung, die zur Aufnahme von Leistung aus [] einem Elektrizitätsver-	Kurzschluss	
die die elektrischen Potenzialdifferenzen zwischen diesen leitfähigen Teilen zu Null oder nahezu Null erzwungen werden. Kurzschlussstrom DIN EN 60909-0 (VDE 0102), 3.2: Überstrom, hervorgerufen durch einen Kurzschluss in einem eletrischen Netz. Anmerkung: Es ist notwendig, zwischen dem Kurzschluss an der Kurzschlussstelle und den Teilkurzschlussströmen an irgendeinem Punkt des Netzes zu unterscheiden. DIN EN 60909-0 (VDE 0102), 3.5: Effektivwert des Wechselstromanteils eines zu erwartenden Kurzschlussstromes im Augenblick des Kurzschlusseintritts, wenn die Impedanz zum Zeitpunkt Null beibehält. Anfangs-Kurzschlusswechselstrom DIN EN 60909-0 (VDE 0102), 3.6: Fiktive Größe berechnet aus dem Produkt [] √3 * Netznennspannung * Anfangs-Kurzschlusswechselstrom. Die Größe wird bei dreipoligem Kurzschluss in Hoch- und Höchstspannungsnetzen als Rechengröße verwendet. Sie ist von der Transformatorübersetzung unabhängig und darf nicht mit der in einem Lichtbogen an der Kurzschlussstelle umgesetzten Leistung verwechselt werden. Last DKE-IEV Nr. 151-15-15: Einrichtung, die zur Aufnahme von Leistung aus [] einem Elektrizitätsver-	Kurzschluss	DIN EN 60909-0 (VDE 0102), 3.1:
Überstrom, hervorgerufen durch einen Kurzschluss in einem eletrischen Netz. Anmerkung: Es ist notwendig, zwischen dem Kurzschluss an der Kurzschlussstelle und den Teilkurzschlussströmen an irgendeinem Punkt des Netzes zu unterscheiden. Anfangs-Kurzschlusswechselstrom Schlusswechselstrom Strome im Augenblick des Wechselstromanteils eines zu erwartenden Kurzschlussstromes im Augenblick des Kurzschlusseintritts, wenn die Impedanz zum Zeitpunkt Null beibehält. Anfangs-Kurzschlusswechselstrom. Schlusswechselstrom Größe berechnet aus dem Produkt [] √3 * Netznennspannung * Anfangs-Kurzschlusswechselstrom. Die Größe wird bei dreipoligem Kurzschluss in Hoch- und Höchstspannungsnetzen als Rechengröße verwendet. Sie ist von der Transformatorübersetzung unabhängig und darf nicht mit der in einem Lichtbogen an der Kurzschlussstelle umgesetzten Leistung verwechselt werden. Last DKE-IEV Nr. 151-15-15: Einrichtung, die zur Aufnahme von Leistung aus [] einem Elektrizitätsver-		die die elektrischen Potenzialdifferenzen zwischen diesen leitfähigen Teilen
Netz. Anmerkung: Es ist notwendig, zwischen dem Kurzschluss an der Kurzschlussstelle und den Teilkurzschlussströmen an irgendeinem Punkt des Netzes zu unterscheiden. Anfangs-Kurzschlusswechselstromanteils eines zu erwartenden Kurzschlussstromes im Augenblick des Kurzschlusseintritts, wenn die Impedanz zum Zeitpunkt Null beibehält. Anfangs-Kurzschlusswechselstromenteils eines zu erwartenden Kurzschlussstromes im Augenblick des Kurzschlusseintritts, wenn die Impedanz zum Zeitpunkt Null beibehält. DIN EN 60909-0 (VDE 0102), 3.6: Fiktive Größe berechnet aus dem Produkt [] √3 * Netznennspannung * Anfangs-Kurzschlusswechselstrom. Die Größe wird bei dreipoligem Kurzschluss in Hoch- und Höchstspannungsnetzen als Rechengröße verwendet. Sie ist von der Transformatorübersetzung unabhängig und darf nicht mit der in einem Lichtbogen an der Kurzschlussstelle umgesetzten Leistung verwechselt werden. Last DKE-IEV Nr. 151-15-15: Einrichtung, die zur Aufnahme von Leistung aus [] einem Elektrizitätsver-	Kurzschlussstrom	DIN EN 60909-0 (VDE 0102), 3.2:
schlusswechselstrom strom Effektivwert des Wechselstromanteils eines zu erwartenden Kurzschlussstromes im Augenblick des Kurzschlusseintritts, wenn die Impedanz zum Zeitpunkt Null beibehält. Anfangs-Kurzschlusswechselstromenteils eines zu erwartenden Kurzschlusstromes im Augenblick des Kurzschlusseintritts, wenn die Impedanz zum Zeitpunkt Null beibehält. DIN EN 60909-0 (VDE 0102), 3.6: Fiktive Größe berechnet aus dem Produkt [] √3 * Netznennspannung * Anfangs-Kurzschlusswechselstrom. Die Größe wird bei dreipoligem Kurzschluss in Hoch- und Höchstspannungsnetzen als Rechengröße verwendet. Sie ist von der Transformatorübersetzung unabhängig und darf nicht mit der in einem Lichtbogen an der Kurzschlussstelle umgesetzten Leistung verwechselt werden. Last DKE-IEV Nr. 151-15-15: Einrichtung, die zur Aufnahme von Leistung aus [] einem Elektrizitätsver-		Netz. Anmerkung: Es ist notwendig, zwischen dem Kurzschluss an der Kurzschlussstelle und den Teilkurzschlussströmen an irgendeinem Punkt des
schlusswechselstrom strom Effektivwert des Wechselstromanteils eines zu erwartenden Kurzschlussstromes im Augenblick des Kurzschlusseintritts, wenn die Impedanz zum Zeitpunkt Null beibehält. Anfangs-Kurzschlusswechselstromenteils eines zu erwartenden Kurzschlusstromes im Augenblick des Kurzschlusseintritts, wenn die Impedanz zum Zeitpunkt Null beibehält. DIN EN 60909-0 (VDE 0102), 3.6: Fiktive Größe berechnet aus dem Produkt [] √3 * Netznennspannung * Anfangs-Kurzschlusswechselstrom. Die Größe wird bei dreipoligem Kurzschluss in Hoch- und Höchstspannungsnetzen als Rechengröße verwendet. Sie ist von der Transformatorübersetzung unabhängig und darf nicht mit der in einem Lichtbogen an der Kurzschlussstelle umgesetzten Leistung verwechselt werden. Last DKE-IEV Nr. 151-15-15: Einrichtung, die zur Aufnahme von Leistung aus [] einem Elektrizitätsver-	Anfangs-Kurz-	DIN EN 60909-0 (VDE 0102). 3.5:
schlusswechselstrom Schlusswechselstrom Stromleistung Fiktive Größe berechnet aus dem Produkt [] √3 * Netznennspannung * Anfangs-Kurzschlusswechselstrom. Die Größe wird bei dreipoligem Kurzschluss in Hoch- und Höchstspannungsnetzen als Rechengröße verwendet. Sie ist von der Transformatorübersetzung unabhängig und darf nicht mit der in einem Lichtbogen an der Kurzschlussstelle umgesetzten Leistung verwechselt werden. Last DKE-IEV Nr. 151-15-15: Einrichtung, die zur Aufnahme von Leistung aus [] einem Elektrizitätsver-	schlusswechsel-	Effektivwert des Wechselstromanteils eines zu erwartenden Kurzschluss- stromes im Augenblick des Kurzschlusseintritts, wenn die Impedanz zum
schlusswechselstrom Stromleistung Fiktive Größe berechnet aus dem Produkt [] √3 * Netznennspannung * Anfangs-Kurzschlusswechselstrom. Die Größe wird bei dreipoligem Kurzschluss in Hoch- und Höchstspannungsnetzen als Rechengröße verwendet. Sie ist von der Transformatorübersetzung unabhängig und darf nicht mit der in einem Lichtbogen an der Kurzschlussstelle umgesetzten Leistung verwechselt werden. Last DKE-IEV Nr. 151-15-15: Einrichtung, die zur Aufnahme von Leistung aus [] einem Elektrizitätsver-	Anfangs-Kurz-	DIN EN 60909-0 (VDE 0102), 3.6:
nungsnetzen als Rechengröße verwendet. Sie ist von der Transformatorübersetzung unabhängig und darf nicht mit der in einem Lichtbogen an der Kurzschlussstelle umgesetzten Leistung verwechselt werden. Last DKE-IEV Nr. 151-15-15: Einrichtung, die zur Aufnahme von Leistung aus [] einem Elektrizitätsver-	schlusswechsel-	I .
Last DKE-IEV Nr. 151-15-15: Einrichtung, die zur Aufnahme von Leistung aus [] einem Elektrizitätsver-		Die Größe wird bei dreipoligem Kurzschluss in Hoch- und Höchstspan- nungsnetzen als Rechengröße verwendet. Sie ist von der Transforma- torübersetzung unabhängig und darf nicht mit der in einem Lichtbogen an
Einrichtung, die zur Aufnahme von Leistung aus […] einem Elektrizitätsver-	Last	
Einrichtung, die zur Aufnahme von Leistung aus […] einem Elektrizitätsver-	1 224	DKE-IEV Nr. 151-15-15:
sorgungssystem vorgesehen ist.	Last	

Stand Oktober 2024 Seite 47 von 66

vertikale Netzlast	EnWG § 23c, Abs. 2.1:
	Die Summe der Stromabgaben aus dem Übertragungsnetz über direkt angeschlossene Transformatoren und Leitungen an Elektrizitätsverteilernetze und Letztverbraucher [].
	Diese ergibt sich aus dem zeitgleichen Saldo der Letztverbraucherlasten und Erzeugungen in nachgelagerten Netzen bzw. bei nachgelagerten Netznutzern.
Residuallast	Bezeichnet die in einem Elektrizitätsversorgungsnetz nachgefragte Leistung (Last) abzüglich der vorrangigen Einspeisungen (Einspeisevorrang gemäß EEG und KWKG). Sie stellt damit die Restnachfrage dar, die von disponiblen Erzeugungsanlagen gedeckt werden muss.
Leistung	
Blindleistung	VDE AR-N 4130, 3.1.29.1:
	Anteil an elektrischer Leistung, mit dem elektrische und magnetische Felder aufgebaut werden und der zwischen den Feldern ausgetauscht wird. Die Blindleistung ist das Produkt der sich aus den Grundschwingungen ergebenden Scheinleistung und dem Sinus des Phasenverschiebungswinkels zwischen der Leiter-Erde-Spannung U und dem Strom I in diesem Leiter.
	Im Kontext von Planung und Betrieb des Übertragungsnetzes wirken Blindleistungsanlagen des Netzbetreibers entweder "spannungshebend" (u. a. Kondensatorenanlage, STATCOM, rotierender Phasenschieber) oder "spannungssenkend" (u. a. Kompensationsspule, rotierender Phasenschieber). Im Erzeugungsbereich wird darunter der "übererregte" (spannungshebende) bzw. "untererregte" (spannungssenkende) Betrieb eines Synchrongenerators verstanden.
Nennleistung	Vom Hersteller angegebene Leistung eines Gerätes, einer Anlage, einer Er-
	zeugungsanlage usw., die diese umsetzen (aufnehmen) oder generieren (abgeben) kann. Die Nennleistung einer Anlage zur Erzeugung von Strom ist die Dauerleistung, die als höchste Leistung bei einem bestimmungsgemäßen Betrieb (d. h., unter definierten Randbedingungen) ohne zeitliche Einschränkung erbracht wird und ihre Lebensdauer und Sicherheit nicht beeinträchtigt.
Scheinleistung	VDE AR-N 4130, 3.1.29.3:
	Bei Drehstrom Produkt der Effektivwerte aus Betriebsspannung, Strom und dem Faktor √3.
Wirkleistung	VDE AR-N 4130, 3.1.29.1:
	Elektrische Leistung, die für den Verbrauch oder die Erzeugung elektrischer Energie maßgebend ist und die für die Umwandlung in andere Leistungen (z. B. mechanische, thermische oder chemische) verfügbar ist.
	Im Allgemeinen wird darunter der Grundschwingungsanteil der Wirkleistung verstanden.
Netz	
Netzauslegung	Rahmendokument - Planung und Betrieb:
	Die Netzadäquanz und die bedarfsgerechte Entwicklung der Netzinfrastruktur. Die Netzauslegung stellt die Bereitstellung einer bedarfsgerechten, d. h. einer weitgehend engpassfreien, Netzinfrastruktur sicher. Maßnahmen der Netzauslegung werden entsprechend dem NOVA-Prinzip umgesetzt [].

Stand Oktober 2024 Seite 48 von 66

Netzanschlusspunkt	VDE-AR-N 4141-1, 3.1.11:				
	Stelle, an der die Kundenanlage oder ein anderes öffentliches oder geschlossenes Verteilnetz an das Netz der allgemeinen Versorgung angeschlossen ist.				
Netzbetreiber	DKE-IEV Nr. 617-02-09:				
	Partei, die für den sicheren und zuverlässigen Betrieb eines Teils eines Elektrizitätsversorgungssystems in einem bestimmten Gebiet und für dessen Anschluss an andere Teile des Elektrizitätsversorgungssystems verantwortlich ist.				
Netzbetrieb	Rahmendokument - Planung und Betrieb:				
bzw. Systembetrieb	Der Netz- und Systembetrieb umfasst die Aufgaben der Netz- und System- führung im Echtzeitbetrieb.				
Betriebsplanung	Rahmendokument - Planung und Betrieb:				
	Die Betriebsplanung des Übertragungsnetzes umfasst Tätigkeiten der Koordinierung des Netzeinsatzes sowie der Netzeinsatzplanung in den Zeitebenen Jahr, Monat, Woche und Tag unter Berücksichtigung der Ergebnisse der vorgelagerten Mehrjahresplanung.				
Netznutzer	DKE-IEV Nr. 617-02-07:				
	Partei, die elektrische Leistung und elektrische Energie an ein Übertragungsnetz oder ein Verteilnetz liefert oder von ihr bezieht.				
Netznutzungsfall	Dieser bildet die Nutzung des Netzes in einer Einspeise- und Lastsituation zu einem bestimmten Zeitpunkt ab.				
Netzsicherheit	VDE-AR-N 4141-1, 3.1.14:				
	Zustand eines Netzes, bei dem die zulässigen Betriebsparameter und vorgegebene Sicherheitskriterien (z. B. (n-1)-Kriterium) eingehalten werden.				
Netztopologie	SO GL , Art. 3, Ziff. 64:				
bzw. Topologie	"Topologie" bezeichnet den Schaltzustand der verschiedenen Übertragungs- oder Verteilernetzbetriebsmittel in einem Umspannwerk und umfasst die elektrische Konfiguration sowie die Stellung der Leistungs[…]- und Trennschalter.				
	Der Aufbau bzw. die Struktur eines Netzes richtet sich insbesondere nach den Anforderungen an die Netz- und Versorgungssicherheit. Das deutsche Übertragungsnetz ist ein Maschennetz mit einer Vielzahl von Knoten und Zweigen; es bietet im Regelfall die höchste Netz- und Versorgungssicherheit.				
Quasistationärer Zustand	Beschreibt im Kontext dieser Planungsgrundsätze den Zeitbereich nach dem Abklingen transienter Vorgänge.				
Regelzone	Verordnung (EU) Nr. 2019/943, Art. 2, Abs. 67:				
	"Regelzone" bezeichnet einen von einem einzigen Übertragungsnetzbetreiber betriebenen zusammenhängenden Teil des Verbundnetzes und umfasst angeschlossene physikalische Lasten und/oder gegebenenfalls Erzeugungseinheiten; EnWG §3 Abs. 30:				
	Im Bereich der Elektrizitätsversorgung das Netzgebiet, für dessen Primärre- gelung, Sekundärregelung und Minutenreserve ein Betreiber von Übertra- gungsnetzen im Rahmen der Union für die Koordinierung des Transports elektrischer Energie (UCTE) verantwortlich ist.				
	Jede Regelzone wird physikalisch durch die Orte der Verbundübergabe- messungen des Sekundärreglers festgelegt.				

Stand Oktober 2024 Seite 49 von 66

Schutzeinrichtung	DKE-IEV Nr. 447-01-49:					
	Einrichtungen, die ein oder mehrere Schutzrelais sowie, soweit erforderlich Logikbausteine enthalten, um eine oder mehrere vorgegebene Schutzfunktionen auszuführen.					
	DKE-IEV Nr. 448-11-04					
	Eine Schutzeinrichtung ist ein Teil eines Schutzsystems.					
Special Protection	SO GL , Art. 37:					
Schemes (SpPS)	Spezielle Schutzmaßnahmen.					
	Beschreiben Sonderlösungen zur Beherrschung kritischer Situationen und Vermeidung unzulässiger Netzzustände durch definierte Gegenmaßnahmen.					
Spannung						
Betriebsspannung	DKE-IEV Nr. 601-01-22:					
	Spannungswert bei Normalbetrieb zu einem bestimmten Zeitpunkt an einer bestimmten Stelle des Netzes.					
	Angabe als Effektivwert der verketteten Spannung.					
höchste Spannung	DKE-IEV Nr. 614-03-01:					
für Betriebsmittel	Effektivwert der größten Außenleiterspannung, für die ein Betriebsmittel be- messen ist im Hinblick auf seine Isolierung und auf andere Eigenschaften, die sich in den entsprechenden Gerätenormen bei Normalbetrieb auf diese Spannung beziehen.					
Nennspannung	DKE-IEV Nr. 826-11-01:					
einer elektrischen Anlage	Spannung, durch die eine elektrische Anlage oder ein Teil der elektrischen Anlage gekennzeichnet ist.					
Nennspannung	DKE-IEV Nr. 601-01-21:					
eines Netzes	Geeigneter, gerundeter Spannungswert zur Bezeichnung oder Identifizie- rung eines Netzes.					
	In Deutschland sind für das Übertragungsnetz die Nennspannungen 380 kV sowie 220 kV definiert.					
Spannungsband	VDE AR-N 4130, 3.1.46:					
	Spannungseffektivwerte zwischen einer oberen und unteren Betriebsspannung eines Netzes.					
Spannungshaltung	DKE-IEV Nr. 614-01-09:					
	Bestandteil der Spannungsqualität, bestimmt auf der Basis der beobachteten Spannungsabweichungen in einem Elektrizitätsversorgungssystemswährend eines gegebenen Zeitintervalls.					
	Die Spannungshaltung dient der Aufrechterhaltung eines bedarfsgerechten Spannungsprofils im gesamten Netz. Dies wird durch eine ausgeglichene Blindleistungsbilanz in Abhängigkeit vom jeweiligen Blindleistungsbedarf des Netzes und der Netznutzer erreicht.					
Stabilität						
Stabilität	DKE-IEV Nr. 351-42-20:					
	Eigenschaft eines Systems, die darin besteht, dass bei einer hinreichend kleinen Anfangsauslenkung aus der Ruhelage oder bei einer genügend kleinen Störung die Zustandsgrößen auf Dauer in einer hinreichend kleinen Umgebung der Ruhelage verbleiben.					

Stand Oktober 2024 Seite 50 von 66

_	
Netzstabilität	DKE-IEV Nr. 603-03-01:
	Die Fähigkeit eines Netzes, nach einer Zustandsänderung - zum Beispiel einer Leistungs- oder Impedanzänderung - weiter einen stationären, durch Synchronismus der Generatoren gekennzeichneten Betriebszustand zu erreichen.
Systemstabilität	Wird im Rahmen dieser Planungsgrundsätze als Oberbegriff verschiedener Stabilitätsaspekte verwendet.
Statische Stabilität	DKE-IEV Nr. 603-03-02:
	Netzstabilität im Falle von langsamen und kleinen Zustandsänderungen.
	Sind keine Regeleinrichtungen an diesem Vorgang beteiligt, spricht man von natürlicher Netzstabilität (DKE-IEV Nr. 603-03-05), andernfalls von künstlicher Netzstabilität (DKE-IEV Nr. 603-03-04). Die Instabilitäten können monoton oder oszillierend sein.
Transiente Stabilität	DKE-IEV Nr. 603-03-03:
	Netzstabilität im Falle von schnellen und/oder großen Zustandsänderungen.
	Der stationäre Betriebszustand nach der Zustandsänderung kann mit dem vor der Zustandsänderung identisch sein oder von ihm abweichen.
Polradwinkelstabilität	SOGL Art 3 Nr.59:
	"Polradwinkelstabilität" bezeichnet die Fähigkeit von Synchronmaschinen, in der N-Situation und nach einer Störung den synchronen Betrieb aufrechtzuerhalten.
	In der "N-Situation" sind alle Übertragungsnetzbetriebsmittel verfügbar (SOGL Art 3 Nr. 3). Dies entspricht dem Grundfall.
Spannungsstabilität	SOGL Art 3 Nr.35:
	"Spannungsstabilität" bezeichnet die Fähigkeit des Übertragungsnetzes, in der N-Situation und nach einer Störung an allen seinen Knotenpunkten akzeptable Spannungen aufrechtzuerhalten.
Frequenzstabilität	SOGL Art 3 Nr.34:
	"Frequenzstabilität" bezeichnet die Fähigkeit des Übertragungsnetzes, in der N-Situation und nach einer Störung eine stabilie Frequenz aufrechtzuerhalten.
Momentanreserve	Drucksache 19/21979 S. 14:
	Trägheit der lokalen Netzstabilität [] ist eine inhärente oder regelungstechnisch umgesetzte Reaktion auf ein Wirkleistungsungleichgewicht, um eine, gegebenenfalls auch nur lokale, Überschreitung von Grenzwerten der Frequenzhaltung, die für die Netzstabilität kritisch sein kann, zu verhindern. Unter inhärente Reaktionen ist insbesondere die Momentanreserve aus Synchronmaschinen (Schwungmasse) [] zu verstehen. Die Momentanreserve reagiert dabei unverzögert auf kurzzeitige Änderungen des Spannungswinkels [].
Störung	SO GL, Art. 3, Nr. 31:
	"Störung" bezeichnet ein ungeplantes Ereignis, das eine Abweichung des Übertragungsnetzes vom Normalzustand verursachen könnte.
Oberschwingung	DKE-IEV Nr. 103-07-25
	Sinusförmige Komponente der Fourier-Reihe einer periodischen Größe, deren Ordnungszahl eine ganze Zahl größer eins ist.

Stand Oktober 2024 Seite 51 von 66

Resonanz	DKE-IEV Nr. 103-05-07			
	Phänomen, das in einem physikalischen System auftritt, wenn eine Periode einer erzwungenen Schwingung derart ist, das ihre charakteristische Größe oder ihre zeitliche Ableitung einen Extremwert erreicht.			
Oberschwingungs-	DKE-IEV Nr. 614-01-17			
resonanz	Zur Verstärkung von Spannungs- und Stromoberschwingungen führender Vorgang, der durch anhaltende Schwingungen zwischen der Induktivität und der Kapazität benachbarter Betriebsmittel oder Teilsysteme zustande kommt.			
Strom				
Engpassstrom (eines Stromkreises)	Kleinster Wert aus Schutzengpassstrom, Schutzgrenzstrom, Stabilitätsengpassstrom und thermischen Engpassstrom.			
	Der Engpassstrom berücksichtigt keine Einschränkungen, die aus der 26. BImSchV oder Wechselwirkungen mit Fremdeinrichtungen resultieren können.			
thermischer Engpassstrom	Kleinster Wert des statischen und dynamischen thermischen Engpassstromes.			
statischer thermischer	Kleinster Bemessungsdauerstrom innerhalb einer Kette von zusammen geschalteten Betriebsmitteln mit unveränderlicher Strombelastbarkeit.			
Engpassstrom	Wird z. B. für Schaltfelder und Leitungen bzw. deren Abschnitte angegeben.			
dynamischer thermischer Engpassstrom	VDE-AR-N 4210-5, 3.4: Von den Witterungsgrößen abhängige, variable Strombelastbarkeit eines Betriebsmittels.			
System				
Stromkreis	DKE-IEV Nr. 466-01-07:			
	Leiter oder Leitersystem, der bzw. das für die Leitung von elektrischem Strom vorgesehen ist.			
	VDE-AR-N 4210-5, 3.1:			
	Elektrische einsystemige Verbindung von zwei oder mehr Umspannwerken, die Schaltfelder und Leitungen einschließt.			
	Hinweis: Dabei kann die Verbindung (Leitung) zwischen den Umspannwer- ken (Schaltfeldern) aus unterschiedlichen (Stromkreis-)Abschnitten beste- hen.			
Systemauslegung	Rahmendokument - Planung und Betrieb:			
	Die Aufgabe der Systemauslegung ist es, der Systemführung ein sicher betreibbares und robustes System in der Einheit von Netz, Erzeugern und Verbrauchern bereitzustellen.			
	Die Systemauslegung umfasst die Netzauslegung, die Auslegung von Systemdienstleistungen, Maßnahmen zur Systemstabilisierung sowie Anforderungen an die Auslegung von Betriebsmitteln.			
Übergabestelle	DKE-IEV Nr. 614-01-02:			
	Punkt in einem Elektizitätsversorgungsnetz, der vertraglich festgelegt und als solcher bezeichnet ist und an dem elektrische Energie zwischen den Vertragspartnern ausgetauscht wird.			

Stand Oktober 2024 Seite 52 von 66

VDE-AR-N 4130, 3.1.24: Übertragungsnetz bzw. Höchst-Drehstromnetz mit Nennspannungen ≥ 150 kV und mit einer Nennfrequenz spannungsnetz von 50 Hz. Unter dem Oberbegriff "Übertragungsnetz" werden im Kontext dieser Planungsgrundsätze die Höchstspannungsnetze (380/220-kV-Netze mit den Transformatoren für horizontale und vertikale Übertragungsaufgaben) inkl. Netzanbindungen von Offshore-Windparks, Interkonnektoren und Fernübertragungsverbindungen der deutschen Übertragungsnetzbetreiber verstan-DKE-IEV Nr. 617-02-11: Übertragungsnetzbetreiber (ÜNB) Partei, die ein Übertragungsnetz betreibt. Verordnung (EU) Nr. 2019/944, Art. 2, Abs. 35: "Übertragungsnetzbetreiber" eine natürliche oder juristische Person, die verantwortlich ist für den Betrieb, die Wartung sowie erforderlichenfalls den Ausbau des Übertragungsnetzes in einem bestimmten Gebiet und, sofern vorhanden, der Verbindungsleitungen zu anderen Netzen sowie für die Sicherstellung der langfristigen Fähigkeit des Netzes, eine angemessene Nachfrage nach Übertragung von Elektrizität zu decken. VDE-AR-N 4141-1, 3.1.19: Netzbetreiber für den Transport von Elektrizität über ein Höchstspannungsund ggf. Hochspannungsnetz einschließlich grenzüberschreitender Verbindungsleitungen zum Zwecke der Belieferung von Letztverbrauchern oder Verteilnetzbetreibern. Betreiber von Übertragungsnetzen haben die Energieübertragung durch das Netz unter Berücksichtigung des Austauschs mit anderen Verbundnetzen zu regeln und mit der Bereitstellung und dem Betrieb ihrer Übertragungsnetze im nationalen und internationalen Verbund zu einem sicheren und zuverlässigen Elektrizitätsversorgungssystem in ihrer Regelzone und damit zu einer sicheren Energieversorgung beizutragen. DKE-IEV Nr. 603-05-03: Versorgungssicherheit Fähigkeit eines Elektrizitätsversorgungssystems, in einem gegebenen Zeitpunkt seine Versorgungsaufgabe im Falle eines Fehlers zu erfüllen. Im Kontext dieser Planungsgrundsätze werden unter Versorgungsaufgabe die horizontalen und vertikalen Übertragungsaufgaben verstanden. DKE-IEV Nr. 692-01-14: Versorgungszuverlässigkeit Fähigkeit eines Elektrizitätsversorgungssystems, seine Versorgungsaufgabe unter gegebenen Betriebsbedingungen während eines festgelegten Zeitintervalls adäquat zu erfüllen. Die beiden Bestandteile der Versorgungszuverlässigkeit eines Elektrizitätsversorgungssystems sind die Eignung (DKE-IEV Nr. 692-01-05) und die Systemsicherheit (DKE-IEV Nr. 692-01-11). Im Kontext dieser Planungsgrundsätze werden unter Versorgungsaufgabe die horizontalen und vertikalen Übertragungsaufgaben verstanden. VDE-AR-N 4141-1, 3.1.20: Verteilnetz bzw. Verteilungsnetz Das Verteilnetz dient innerhalb einer begrenzten Region der Verteilung und Aufnahme von elektrischer Energie an Stationen und Anlagen von Netzkunden. In Deutschland werden Nieder-, Mittel und Hochspannungsnetze als Verteilnetze genutzt.

Stand Oktober 2024 Seite 53 von 66

Verteilnetz- bzw. Verteilungsnetzbetreiber (VNB)

DKE-IEV Nr. 617-02-10:

Partei, die ein Verteilnetz betreibt.

Verordnung (EU) Nr. 2019/944, Art. 2, Abs. 29:

"Verteilernetzbetreiber" eine natürliche oder juristische Person, die verantwortlich ist für den Betrieb, die Wartung sowie erforderlichenfalls den Ausbau des Verteilernetzes in einem bestimmten Gebiet und, sofern vorhanden, der Verbindungsleitungen zu anderen Netzen sowie für die Sicherstellung der langfristigen Fähigkeit des Netzes, eine angemessene Nachfrage nach Verteilung von Elektrizität zu decken.

Stand Oktober 2024 Seite 54 von 66

7 Abkürzungen, Formelzeichen und Einheiten

A Ampere (Maßeinheit der Stromstärke)

BNetzA Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen

BBPIG Bundesbedarfsplangesetz

DE Deutschland (Ländercodeliste gemäß ISO-3166-1, ALPHA-2)

DIN EN DIN-Norm Europäische Norm (DIN – Deutsches Institut für Normung e.V.)

DKE-IEV Deutsche online-Ausgabe und nationale Umsetzung des Internationalen Elektrotechni-

schen Wörterbuchs der IEC – International Electrotechnical Vocabulary (IEV)

EE / EEG Erneuerbare Energie(n) / Erneuerbare-Energien-Gesetz

EnLAG Energieleitungsausbaugesetz

ENTSO-E European Network of Transmission System Operators for Electricity

EnWG Energiewirtschaftsgesetz

EU Europäische Union

FACTS Flexible AC Transmission Systems (AC = Alternating Current = Wechselstrom)

HGÜ Hochspannungs-Gleichstrom-Übertragung

HöS Höchstspannung (größer 110 kV)

HS Hochspannung (kleiner/gleich 110 kV)

HTL / HTLS Hochtemperaturleiter / mit geringem Durchhang (High Temperature (Line) / Low Sag)

KraftNAV Kraftwerks-NetzanschlussverordnungkV Kilovolt (Maßeinheit der Spannung)

KWK / KWKG Kraft-Wärme-Kopplung / Kraft-Wärme-Kopplungsgesetz

MSCDN Mechanical Switched Capacitor with Damping Network

NABEG Netzausbaubeschleunigungsgesetz Übertragungsnetz

max maximal (als Index)
min minimal (als Index)

ms Millisekunde (Maßeinheit der Zeit)

MS Mittelspannung (größer 1 kV bis kleiner 60 kV)

MW Megawatt (Maßeinheit der Wirkleistung)

PST Phase-Shifting Transformer (Querregeltransformator)

SO GL System Operation Guideline
SpPS Special Protection Schemes

STATCOM Static Synchronous Compensator

TCSC Thyristor-Controlled Series Compensation

SVC Static Var Compensator
U Spannung (Formelzeichen)

VDE Verband der Elektrotechnik Elektronik Informationstechnik e.V.

VDEW (ehemaliger) Verband der Elektrizitätswirtschaft e. V. (heute in BDEW Bundesverband der

Energie- und Wasserwirtschaft e.V.)

Stand Oktober 2024 Seite 55 von 66

8 Abbildungs- und Tabellenverzeichnis

Abbildung 1:	Bestandteile und Abgrenzung abzudeckender Ausfallereignisse in der Netzauslegung und den anderen Säulen der Systemauslegung
Abbildung 2:	Erweitertes (n-1)-Kriterium (Einhaltung des (n-1)-Kriteriums bei zuvor erfolgter betriebsbedingter Freischaltung) für Stationsanschlüsse an der Übergabestelle ÜNB – VNB 27
Abbildung 3:	Common-Mode-Ausfall für Stationsanschlüsse an der Übergabestelle ÜNB – VNB 27
Abbildung 4:	Regionale Gliederung des Übertragungsnetzes zur Ermittlung witterungsabhängiger Strombelastbarkeiten von Freileitungen
Abbildung 5:	Prozentuale Strombelastbarkeiten in Abhängigkeit von Umgebungstemperatur und Windgeschwindigkeit (Berechnung mit dem CIGRE-Verfahren)
Abbildung 6:	Übersicht zu Stabilitätsaspekten[28], [29], [30]
Tabelle 1:	Praxisrelevante Mehrfachabschaltungen im Sinne des erweiterten (n-1)-Ausfalls (Ausfall während betriebsbedingter Freischaltung bzw. betriebsbedingte Freischaltungen mehrerer Betriebsmittel) mit Auswirkungen auf die horizontale und/oder vertikale Übertragungsaufgabe
Tabelle 2:	Praxisrelevante Beispiele zeitgleicher Ausfälle mehrerer Betriebsmittel (Common-Mode-Ausfälle) mit Auswirkungen auf die horizontale und/oder vertikale Übertragungsaufgabe sowie Relevanz für die Netzauslegung

Stand Oktober 2024 Seite 56 von 66

9 Literaturverzeichnis

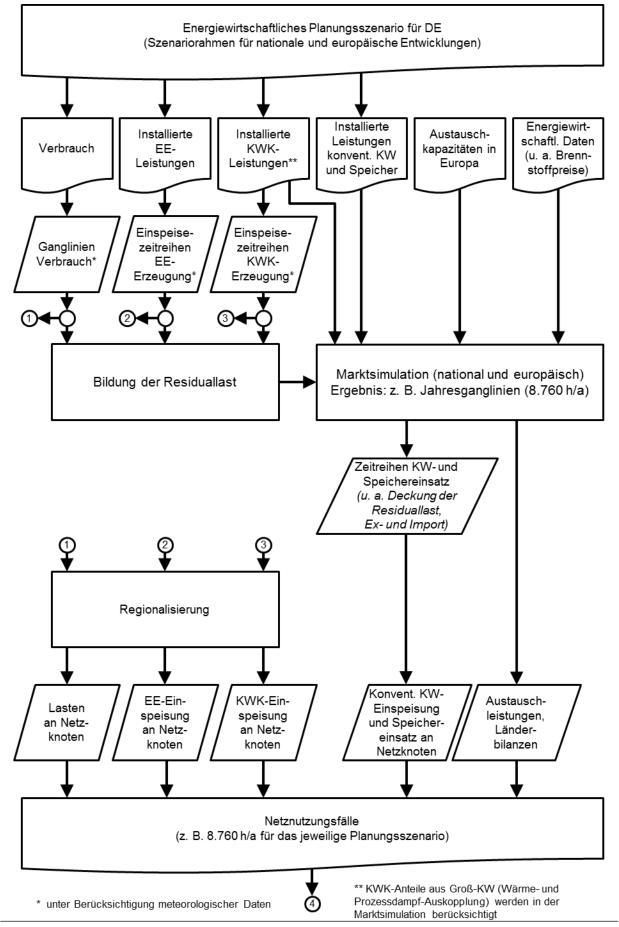
- [1] Monitoring-Bericht des Bundesministeriums für Wirtschaft und Technologie nach § 51 EnWG zur Versorgungssicherheit im Bereich der leitungsgebundenen Versorgung mit Elektrizität (Januar 2011)
- [2] Verordnung (EU) 2017/1485 der Kommission vom 2. August 2017 zur Festlegung einer Leitlinie für den Übertragungsnetzbetrieb (umgangssprachlich: "system operation guideline" SO GL)
- [3] Rahmendokument Planung und Betrieb des deutschen Übertragungsnetzes, März 2022 www.netztransparenz.de
- [4] VDE-AR-N 4130 Technische Regeln für den Anschluss von Kundenanlagen an das Höchstspannungsnetz und deren Betrieb (TAR Höchstspannung), November 2018
- [5] VDE-AR-N 4141-1 Technische Regeln für den Betrieb und die Planung von elektrischen Netzen Teil 1: Schnittstelle Übertragungs- und Verteilnetze, Januar 2019
- [6] Störungs- und Verfügbarkeitsstatistik Anleitung -, 7. Ausgabe Oktober 2013, Forum Netztechnik/Netzbetrieb im VDE (FNN)
- [7] VDE-AR-N 4121 Anwendungsregel: 2018-04, Planungsgrundsätze für 110-kV-Netze, April 2018
- [8] FNN-Hinweis, Spitzenkappung ein neuer planerischer Freiheitsgrad, Möglichkeiten zur Berücksichtigung der Spitzenkappung bei der NetzpAlanung in Verteilnetzen, Februar 2017
- [9] EN IEC 62271-102 High-voltage switchgear and controlgear Part 102: Alternating current disconnectors and earthing switches, May 2008
- [10] DIN IEC 60076-7 (VDE 0532-76-7) Leistungstransformatoren Teil 7: Leitfaden für die Belastung von mineralölgefüllten Leistungstransformatoren, Mai 2023
- [11] Überlegungen zur Nutzung von Reserven der Belastbarkeit von Netzbetriebsmitteln, Deutsche Verbundgesellschaft e.V., Juni 1997
- [12] DIN VDE 0845-6-1 (VDE 0845-6-1) Maßnahmen bei Beeinflussung von Telekommunikationsanlagen durch Starkstromanlagen Teil 1: Grundlagen, Grenzwerte, Berechnungs- und Messverfahren, April 2013
- [13] DIN VDE 0845-6-2 (VDE 0845-6-2) Maßnahmen bei Beeinflussung von Telekommunikationsanlagen durch Starkstromanlagen Teil 2: Beeinflussung durch Drehstromanlagen, September 2014
- [14] DIN EN 50443 (VDE 0845-8) Auswirkungen elektromagnetischer Beeinflussungen von Hochspannungswechselstrombahnen und/oder Hochspannungsanlagen auf Rohrleitungen, August 2012
- [15] Technische Regel DVGW GW 22 (A) Arbeitsblatt: Maßnahmen beim Bau und Betrieb von Rohrleitungen im Einflussbereich von Hochspannungs-Drehstromanlagen und Wechselstrom-Bahnanlage; textgleich mit der AfK-Empfehlung Nr. 3 und der Technischen Empfehlung Nr. 7 der Schiedsstelle für Beeinflussungsfragen, DVGW Deutscher Verein des Gasund Wasserfaches e.V, Februar 2014
- [16] DIN EN 50341-1 (VDE 0210-1) Freileitungen über AC 1 kV Teil 1: Allgemeine Anforderungen Gemeinsame Festlegungen, November 2013
- [17] DIN EN 50182 Leiter für Freileitungen Leiter aus konzentrisch verseilten runden Drähten, Dezember 2001
- [18] VDE-AR-N 4210-5 Anwendungsregel: 2020-06, Witterungsabhängiger Freileitungsbetrieb, Juni 2020

Stand Oktober 2024 Seite 57 von 66

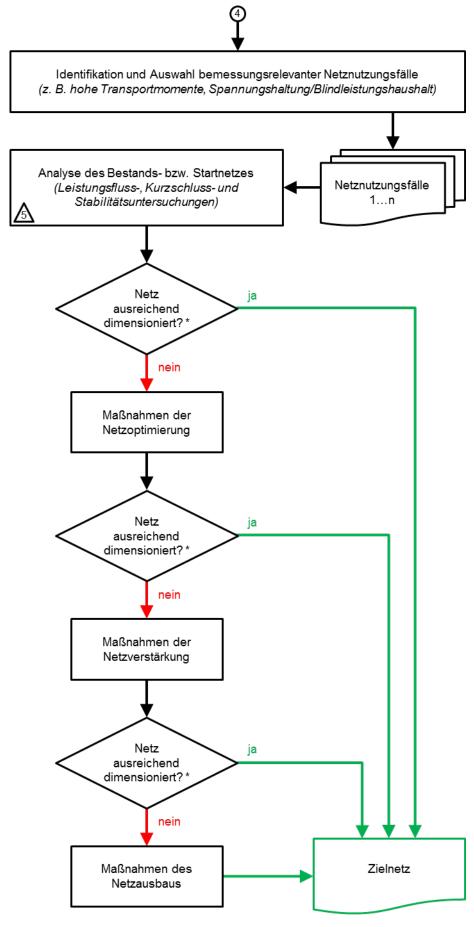
- [19] Untersuchung zur Weiterentwicklung der Methodik zur Berücksichtigung der witterungsabhängigen Freileitungsbelastbarkeit in der Ausbauplanung des deutschen Übertragungsnetzes, Th. Kanefendt et al., Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE, Kassel, Mai 2019
- [20] Integration erneuerbarer Energien in die deutsche Stromversorgung im Zeitraum 2015 2020 mit Ausblick 2025, dena-Netzstudie II, Konsortium 50Hertz Transmission/Amprion/DEWI/ EnBW Transportnetze/EWI/Fraunhofer IWES/TenneT, November 2010
- [21] Untersuchungen zur witterungsabhängigen Strombelastbarkeit von Freileitungen für Netzausbauplanungen und Netzbetrieb, Dr.-Ing. Ralf Puffer, Institut für Hochspannungstechnik der RWTH Aachen, November 2017
- [22] Cigré Technical Brochure 207, The thermal behaviour of overhead conductors, August 2002
- [23] IEC 60287-1-1 Electric cables Calculation of the current rating Part 1-1: Current rating equations (100 % load factor) and calculation of losses General, May 2023
- [24] IEC 60853-2 Calculation of the cyclic and emergency current rating of cables. Part 2: Cyclic rating of cables greater than 18/30 (36) kV and emergency ratings for cables of all voltages, September 1989
- [25] DIN VDE 0276-1000 (VDE 0276-1000) Starkstromkabel Strombelastbarkeit, Allgemeines; Umrechnungsfaktoren, Juni 1995
- [26] VDE-AR-N 4131 Technische Regeln für den Anschluss von HGÜ-Systemen und über HGÜ-Systeme angeschlossene Erzeugungsanlagen (TAR HGÜ), März 2019
- [27] DIN EN 50160 Merkmale der Spannung in öffentlichen Elektrizitätsversorgungsnetzen, November 2020
- [28] Systemstabilitätsbericht 2023, Mai 2024, www.bundesnetzagentur.de/DE/Fachthemen/ ElektrizitaetundGas/NetzentwicklungSmartGrid/Systemstabilitaet
- [29] IEEE: Technical Report PES-TR77 Stability definitions and characterization of dynamic behavior in systems with high penetration of power electronic interfaced technologies, April 2020
- [30] IEEE: TRANSACTIONS ON POWER SYSTEMS, VOL. 36, NO. 4, JULY 2021
- [31] DIN EN 60909-0 (VDE 0102) Kurzschlussströme in Drehstromnetzen Teil 0: Berechnung der Ströme, Dezember 2016
- [32] DIN-VDE-0228-3 Maßnahmen bei Beeinflussung von Fernmeldeanlagen durch Starkstrom-anlagen Beeinflussung durch Wechselstrom-Bahnanlagen, "September 1988
- [33] DIN EN 60865-1 (VDE 0103) Kurzschlussströme Berechnung der Wirkung Teil 1 Begriffe und Berechnungsverfahren, September 2012
- [34] DIN EN 61936-1 (VDE 0101-1) Starkstromanlagen mit Nennwechselspannungen über 1 kV AC und 1,5 kV DC, Februar 2023
- [35] VDE-AR-N 4120 Technische Regeln für den Anschluss von Kundenanlagen an das Hochspannungsnetz und deren Betrieb (TAR Hochspannung), November 2018
- [36] DKE-IEV Online Wörterbuch, Online verfügbar unter: https://www2.dke.de/de/Online-Service/DKE-IEV/Seiten/IEV-Woerterbuch.aspx
- [37] Verordnung (EG) Nr. 714/2009 des Europäischen Parlaments und des Rates vom 13. Juli 2009 über die Netzzugangsbedingungen für den grenzüberschreitenden Stromhandel
- [38] Verordnung (EU) 2019/943 des Europäischen Parlaments und des Rates vom 5. Juni 2019 über den Elektrizitätsbinnenmarkt
- [39] Drucksache 19/21979 Gesetzesbegründung zu § 12h EnWG, 31.08.2020, Deutscher Bundestag

Stand Oktober 2024 Seite 58 von 66

10 Anhang / Anlagenverzeichnis

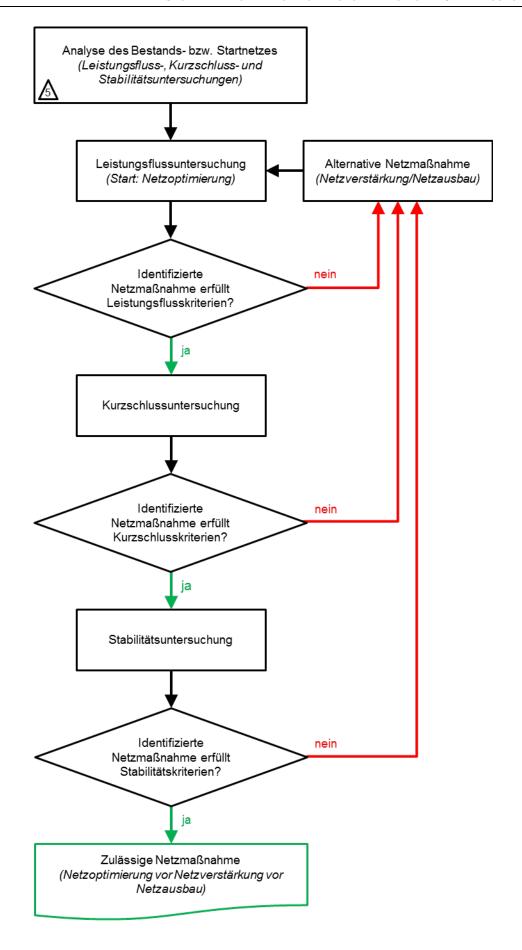

Anlage 1: Prinzipablauf des Netzplanungsprozesses

Anlage 2: Randbedingungen für Leistungsflussuntersuchungen in der Netzplanung


Stand Oktober 2024 Seite 59 von 66

Anlage 1

Prinzipablauf des Netzplanungsprozesses



Stand Oktober 2024 Seite 60 von 66

^{*} bzw. Übertragungsaufgabe erfüllt

Stand Oktober 2024 Seite 61 von 66

Stand Oktober 2024 Seite 62 von 66

Anlage 2

Randbedingungen für Leistungsflussuntersuchungen in der Netzplanung

Klasse	Grundfall bzw. Ausfallart	Übertragungsauf- gabe	Netznutzungsfall (NNF)	Grenzwerteinhaltung	
G	Grundfall	Horizontal und Vertikal	Alle NNF	Standard	
B1	Freischaltung eines Betriebsmittels	Horizontal und Vertikal	Alle NNF	Standard	
B2	Freischaltung Mehrfachleitung oder Leitungs- kreuzung *	Horizontal und Vertikal	NNF mit angepasster Übertragungsauf- gabe	Standard, ggf. Auswir- kung auf Anlagenge- staltung oder Proviso- rien bei Um-/Neubau	
A1	(n-1)-Ausfall	Horizontal	Alle NNF	Standard	
A2	(n-1)-Ausfall	Vertikal für Ent- nahme VNB	Alle Entnahme-NNF	Standard	
А3	(n-1)-Ausfall	Vertikal für Ent- nahme Industrie	Alle Entnahme-NNF	Abhängig vom Netz- nutzer	
A4	(n-1)-Ausfall	Vertikal mit EE- Rückspeisung VNB	Alle Rückspeisungs- NNF	Standard, mit Eingriffs- möglichkeit auf VNB- Seite	
A5	(n-1)-Ausfall	Vertikale Einspeisung	Alle Einspeisungs- NNF	(n-0) bzw. abhängig vom Netznutzer	
AA1	Freischaltung und (n-1)-Ausfall **	Horizontal	Ggf. Anpassung durch Markteingriff	Standard	
AA2	Freischaltung und (n-1)-Ausfall **	Vertikal für Ent- nahme VNB	Alle Entnahme-NNF	Standard, in Koordina- tion ÜNB/VNB	
AA3	Freischaltung und (n-1)-Ausfall **	Vertikal für Ent- nahme Industrie	Alle Entnahme-NNF	Abhängig vom Netz- nutzer	
AA4	Freischaltung und (n-1)-Ausfall **	Vertikal mit EE- Rückspeisung VNB	Alle Rückspeisungs- NNF mit EE- Anpassung	Standard, mit Eingriffs- möglichkeit auf VNB- Seite	

Stand Oktober 2024 Seite 63 von 66

Klasse	Grundfall bzw. Ausfallart	Übertragungsauf- gabe	Netznutzungsfall (NNF)	Grenzwerteinhaltung
C1	Unabhängiger Mehrfachausfall	Nicht für die Netz- auslegung relevant		
C2	Common-Mode- Ausfall	Horizontal	Alle NNF	Temporär erweiterte Grenzwerte zulässig, räumlich begrenzte Störungsauswirkung
C2	Common-Mode- Ausfall	Vertikal für Ent- nahme VNB	Alle Entnahme-NNF	Temporär erweiterte Grenzwerte zulässig, in Koordination ÜNB/VNB
С3	Common-Mode- Ausfall	Vertikal für Ent- nahme Industrie	Alle Entnahme-NNF	Abhängig vom Netz- nutzer
C4	Common-Mode- Ausfall	Vertikal mit EE- Rückspeisung VNB	Alle Rückspeisungs- NNF	Temporär erweiterte Grenzwerte zulässig, räumlich begrenzte Störungsauswirkung

Stand Oktober 2024 Seite 64 von 66

Klasse	Grundfall bzw. Ausfallart	Übertragungsauf- gabe	Netznutzungsfall (NNF)	Grenzwerteinhaltung
S1	Sammelschiene oder Sammel- schienenab- schnitt ***	Horizontal	Alle NNF	Temporär erweiterte Grenzwerte zulässig, räumlich begrenzte Störungsauswirkung,
				Erzeugungs- oder Lastausfall bis 2.000 MW
S2	Sammelschiene oder Sammel- schienenab- schnitt ***	Vertikal für Ent- nahme VNB	Alle Entnahme-NNF	Temporär erweiterte Grenzwerte zulässig, räumlich begrenzte Störungsauswirkung, in Koordination ÜNB/VNB
S3	Sammelschiene oder Sammel- schienenab- schnitt ***	Vertikal für Ent- nahme Industrie	Alle Entnahme-NNF	Abhängig vom Netz- nutzer
S4	Sammelschiene oder Sammel- schienenab- schnitt ***	Vertikal mit EE- Rückspeisung VNB	Alle Rückspeisungs- NNF	Temporär erweiterte Grenzwerte zulässig, räumlich begrenzte Störungsauswirkung, in Koordination ÜNB/VNB, Erzeu- gungsausfall bis 2.000 MW
S5	Zwei gekuppelte Sammelschienen oder -abschnitte	Horizontal	Alle NNF	Temporär erweiterte Grenzwerte zulässig, räumlich begrenzte Störungsauswirkung, Erzeugungs- oder Lastausfall bis 3.000 MW
S6	Zwei gekuppelte Sammelschienen oder -abschnitte	Vertikal	Alle NNF	Temporär erweiterte Grenzwerte zulässig, räumlich begrenzte Störungsauswirkung, in Koordination ÜNB/VNB, Erzeu- gungs- oder Lastaus- fall bis 3.000 MW

^{*} Beschränkung auf zwei Stromkreise gemäß Kapitel 3.5.2 (hier: Nichtverfügbarkeit mehrerer Betriebsmittel) und Tabelle 2.

Stand Oktober 2024 Seite 65 von 66

^{**} Erweiterter (n-1)-Ausfall bzw. erweitertes (n-1)-Kriterium gemäß Kapitel 3.5.2 Nichtverfügbarkeit bzw. Ausfall mehrerer Betriebsmittel.

^{***} Ausfall mit Einzelfallbetrachtung der Fehlerauswirkungen gemäß Kapitel 4.3